ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutrino reactions via neutral and charged current by Quasi-particle Random Phase Approximation(QRPA)

128   0   0.0 ( 0 )
 نشر من قبل Eunja Ha
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We developed the quasi-particle random phase approximation (QRPA) for the neutrino scattering off even-even nuclei via neutral current (NC) and charged cur- rent (CC). The QRPA has been successfully applied for the beta and betabeta decay of relevant nuclei. To describe neutrino scattering, general multipole transitions by weak interactions with a finite momentum transfer are calculated for NC and CC reaction with detailed formalism. Since we consider neutron-proton (np) pairing as well as neutron-neutron (nn) and proton-proton (pp) pairing correlations, the nn + pp QRPA and np QRPA are combined in a framework, which enables to describe both NC and CC reactions in a consistent way. Numerical results for u-^{12}C, -^{56}Fe and -^{56}Ni reactions are shown to comply with other theoretical calculations and reproduce well available experimental data.



قيم البحث

اقرأ أيضاً

Inclusive neutrino-nucleus cross sections are calculated using a consistent relativistic mean-field theoretical framework. The weak lepton-hadron interaction is expressed in the standard current-current form, the nuclear ground state is described wit h the relativistic Hartree-Bogoliubov model, and the relevant transitions to excited nuclear states are calculated in the relativistic quasiparticle random phase approximation. Illustrative test calculations are performed for charged-current neutrino reactions on $^{12}$C, $^{16}$O, $^{56}$Fe, and $^{208}$Pb, and results compared with previous studies and available data. Using the experimental neutrino fluxes, the averaged cross sections are evaluated for nuclei of interest for neutrino detectors. We analyze the total neutrino-nucleus cross sections, and the evolution of the contribution of the different multipole excitations as a function of neutrino energy. The cross sections for reactions of supernova neutrinos on $^{16}$O and $^{208}$Pb target nuclei are analyzed as functions of the temperature and chemical potential.
By means of a Monte Carlo cascade method, to account for the rescattering of the outgoing nucleon, we study the charged and neutral current inclusive one nucleon knockout reactions off nuclei induced by neutrinos. The nucleon emission process studied here is a clear signal for neutral--current neutrino driven reactions, and can be used in the analysis of future neutrino experiments.
In this article, we present the charged and neutral current coherent pion production in the neutrino-nucleus interaction in the resonance region using the formalism based on the partially conserved axial current (PCAC) theorem which relates the neutr ino-nucleus cross section to the pion-nucleus elastic cross section. The pion nucleus elastic cross section is calculated using the Glauber model approach. We calculate the integrated cross sections for neutrino-carbon, neutrino-iron and neutrino-oxygen scattering. The results of integrated cross-section calculations are compared with the measured data
64 - M.Valverde 2006
The quasi-elastic contribution of the nuclear inclusive electron scattering model developed in A. Gil, J. Nieves, and E. Oset: Nucl. Phys. A 627 (1997) 543; is extended to the study of electroweak Charged Current (CC) induced nuclear reactions at int ermediate energies of interest for future neutrino oscillation experiments. The model accounts for long range nuclear (RPA) correlations, Final State Interaction and Coulomb corrections. RPA correlations are shown to play a crucial role in the whole range of neutrino energies, up to 500 MeV, studied in this work. Predictions for inclusive muon capture for different nuclei, and for the reactions $^{12}$C$( u_mu,mu^-)X$ and $^{12}$C$( u_e,e^-)X$ near threshold are also given.
In this work, we study charged current quasi elastic scattering of muon anti-neutrino off nucleon and nucleus using a formalism based on Llewellyn Smith (LS) model. Parameterizations by Galster et al. are used for electric and magnetic Sachs form fac tors of nucleons. We use Fermi gas model along with Pauli suppression condition to take into account the nuclear effects in anti-neutrino - nucleus QES. We calculate muon anti-neutrino-p and muon anti-neutrino-^{12}C charged current quasi elastic scattering differential and total cross sections for different values of axial mass M_{A} and compare the results with data from GGM, SKAT, BNL, NOMAD, MINERvA and MiniBooNE experiments. The present theoretical approach gives an excellent description of differential cross section data. The calculations with axial mass M_{A} = 0.979 and 1.05 GeV are compatible with data from most of the experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا