ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovering the Higgs Through Highly-Displaced Vertices

185   0   0.0 ( 0 )
 نشر من قبل Matthew J. Strassler
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We suggest that the Higgs could be discovered at the Tevatron or the LHC (perhaps at the LHCb detector) through decays with one or more substantially displaced vertices from the decay of new neutral particles. This signal may occur with a small but measurable branching fraction in the recently-described ``hidden valley models, hep-ph/0604261; weakly-coupled models with multiple scalars, including those of hep-ph/0511250, can also provide such signals, potentially with a much larger branching fraction. This decay channel may extend the Higgs mass reach for the Tevatron. Unusual combinations of b jets, lepton pairs and/or missing energy may accompany this signal.

قيم البحث

اقرأ أيضاً

Displaced vertices are relatively unusual signatures for dark matter searches at the LHC. We revisit the model of pseudo-Dirac dark matter (pDDM), which can accommodate the correct relic density, evade direct detection constraints, and generically pr ovide observable collider signatures in the form of displaced vertices. We use this model as a benchmark to illustrate the general techniques involved in the analysis, the complementarity between monojet and displaced vertex searches, and provide a comprehensive study of the current bounds and prospective reach.
Particles with a sub-millimeter decay length appear in many models of physics beyond the Standard Model. However, their longevity has been often ignored in their LHC searches and they have been regarded as promptly-decaying particles. In this letter, we show that, by requiring displaced vertices on top of the event selection criteria used in the ordinary search strategies for promptly-decaying particles, we can considerably extend the LHC reach for particles with a decay length of $gtrsim 100~mu{rm m}$. We discuss a way of reconstructing sub-millimeter displaced vertices by exploiting the same technique used for the primary vertex reconstruction on the assumption that the metastable particles are always pair-produced and their decay products contain high-$p_{rm T}$ jets. We show that, by applying a cut based on displaced vertices on top of standard kinematical cuts for the search of new particles, the LHC reach can be significantly extended if the decay length is $gtrsim 100~mu{rm m}$. In addition, we may measure the lifetime of the target particle through the reconstruction of displaced vertices, which plays an important role in understanding the new physics behind the metastable particles.
A variety of new-physics models predict metastable particles whose decay length is $lesssim 1$ mm. Conventional displaced-vertex searches are less sensitive to this sub-millimeter decay range, and thus such metastable particles have been looked for o nly in usual prompt decay searches. In this paper, we show that an additional event-selection cut based on the vertex reconstruction using charged tracks considerably improves the sensitivity of ordinary searches which rely only on kinematic selection criteria, for particles with a decay length of $gtrsim 100$ $mu text{m}$. To that end, we consider a metastable gluino as an example, and study the impact of this new event-selection cut on gluino searches at the LHC by simulating both the signal and Standard Model background processes. Uncertainty of the displaced-vertex reconstruction due to the limited resolution of track reconstruction is taken into account. We also discuss possibilities for optimization of the kinematic selection criteria, which takes advantage of significant reduction of background through the requirement of displaced vertices. In addition, we demonstrate that using the method discussed in this paper it is possible to measure the lifetime of metastable particles with an ${cal O}(1)$ accuracy at the high-luminosity LHC. Implications for a future 100 TeV collider are also studied, where produced particles tend to be more boosted and thus it is easier to detect the longevity of metastable particles.
The existence of a second Higgs doublet in Nature could lead to a cosmological first order electroweak phase transition and explain the origin of the matter-antimatter asymmetry in the Universe. We obtain the spectrum and properties of the new scalar s $H_0$, $A_0$ and $H^{pm}$ that signal such a phase transition, and show that the observation of the decay $A_0 rightarrow H_0 Z$ at LHC would be a `smoking gun signature of these scenarios. We analyze the LHC search prospects for this decay in the $ell ell bbar{b}$ and $ell ell W^{+} W^{-}$ final states, arguing that current data may be sensitive to this signature in the former channel as well as there being great potential for a discovery in either one at the very early stages of the 14 TeV run.
Many models of electroweak symmetry breaking have an additional light pseudoscalar. If the Higgs boson can decay to a new pseudoscalar, LEP searches for the Higgs can be significantly altered and the Higgs can be as light as 86 GeV. Discovering the H iggs boson in these models is challenging when the pseudoscalar is lighter than 10 GeV because it decays dominantly into tau leptons. In this paper, we discuss discovering the Higgs in a subdominant decay mode where one of the pseudoscalars decays to a pair of muons. This search allows for potential discovery of a cascade-decaying Higgs boson with the complete Tevatron data set or early data at the LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا