ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for Metastable Particles with Sub-Millimeter Displaced Vertices at Hadron Colliders

77   0   0.0 ( 0 )
 نشر من قبل Hayato Ito
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A variety of new-physics models predict metastable particles whose decay length is $lesssim 1$ mm. Conventional displaced-vertex searches are less sensitive to this sub-millimeter decay range, and thus such metastable particles have been looked for only in usual prompt decay searches. In this paper, we show that an additional event-selection cut based on the vertex reconstruction using charged tracks considerably improves the sensitivity of ordinary searches which rely only on kinematic selection criteria, for particles with a decay length of $gtrsim 100$ $mu text{m}$. To that end, we consider a metastable gluino as an example, and study the impact of this new event-selection cut on gluino searches at the LHC by simulating both the signal and Standard Model background processes. Uncertainty of the displaced-vertex reconstruction due to the limited resolution of track reconstruction is taken into account. We also discuss possibilities for optimization of the kinematic selection criteria, which takes advantage of significant reduction of background through the requirement of displaced vertices. In addition, we demonstrate that using the method discussed in this paper it is possible to measure the lifetime of metastable particles with an ${cal O}(1)$ accuracy at the high-luminosity LHC. Implications for a future 100 TeV collider are also studied, where produced particles tend to be more boosted and thus it is easier to detect the longevity of metastable particles.

قيم البحث

اقرأ أيضاً

Particles with a sub-millimeter decay length appear in many models of physics beyond the Standard Model. However, their longevity has been often ignored in their LHC searches and they have been regarded as promptly-decaying particles. In this letter, we show that, by requiring displaced vertices on top of the event selection criteria used in the ordinary search strategies for promptly-decaying particles, we can considerably extend the LHC reach for particles with a decay length of $gtrsim 100~mu{rm m}$. We discuss a way of reconstructing sub-millimeter displaced vertices by exploiting the same technique used for the primary vertex reconstruction on the assumption that the metastable particles are always pair-produced and their decay products contain high-$p_{rm T}$ jets. We show that, by applying a cut based on displaced vertices on top of standard kinematical cuts for the search of new particles, the LHC reach can be significantly extended if the decay length is $gtrsim 100~mu{rm m}$. In addition, we may measure the lifetime of the target particle through the reconstruction of displaced vertices, which plays an important role in understanding the new physics behind the metastable particles.
QCD instantons are arguably the best motivated yet unobserved nonperturbative effects predicted by the Standard Model. A discovery and detailed study of instanton-generated processes at colliders would provide a new window into the phenomenological e xploration of QCD and a vastly improved fundamental understanding of its non-perturbative dynamics. Building on the optical theorem, we numerically calculate the total instanton cross-section from the elastic scattering amplitude, also including quantum effects arising from resummed perturbative exchanges between hard gluons in the initial state, thereby improving in accuracy on previous results. Although QCD instanton processes are predicted to be produced with a large scattering cross-section at small centre-of-mass partonic energies, discovering them at hadron colliders is a challenging task that requires dedicated search strategies. We evaluate the sensitivity of high-luminosity LHC runs, as well as low-luminosity LHC and Tevatron runs. We find that LHC low-luminosity runs in particular, which do not suffer from large pileup and trigger thresholds, show a very good sensitivity for discovering QCD instanton-generated processes.
We review the theoretical motivations and experimental status of searches for stable massive particles (SMPs) which could be sufficiently long-lived as to be directly detected at collider experiments. The discovery of such particles would address a n umber of important questions in modern physics including the origin and composition of dark matter in the universe and the unification of the fundamental forces. This review describes the techniques used in SMP-searches at collider experiments and the limits so far obtained on the production of SMPs which possess various colour, electric and magnetic charge quantum numbers. We also describe theoretical scenarios which predict SMPs and the phenomenology needed to model their production at colliders and interactions with matter. In addition, the interplay between collider searches and open questions in cosmology is addressed.
A weak singlet charged scalar exists in many new physics models beyond the Standard Model. The discovery potential of the singlet charged scalar is explored at future lepton colliders, e.g. the CEPC, ILC-350 and ILC-500. We demonstrate that one can d iscover the singlet charged scalar up to 118 GeV at the CEPC with an integrated luminosity of $5~mathrm{ab}^{-1}$. At the ILC-350 and the ILC-500 with an integrated luminosity of $1~mathrm{ab}^{-1}$ such a discovery limit can be further improved to 136 GeV and 160 GeV, respectively.
100 - J.F. Gunion 1996
Doubly-charged Higgs bosons ($Delta^{--}/Delta^{++}$) appear in several extensions to the Standard Model and can be relatively light. We review the theoretical motivation for these states and present a study of the discovery reach in future runs of t he Fermilab Tevatron for pair-produced doubly-charged Higgs bosons decaying to like-sign lepton pairs. We also comment on the discovery potential at other future colliders.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا