ﻻ يوجد ملخص باللغة العربية
The existence of a second Higgs doublet in Nature could lead to a cosmological first order electroweak phase transition and explain the origin of the matter-antimatter asymmetry in the Universe. We obtain the spectrum and properties of the new scalars $H_0$, $A_0$ and $H^{pm}$ that signal such a phase transition, and show that the observation of the decay $A_0 rightarrow H_0 Z$ at LHC would be a `smoking gun signature of these scenarios. We analyze the LHC search prospects for this decay in the $ell ell bbar{b}$ and $ell ell W^{+} W^{-}$ final states, arguing that current data may be sensitive to this signature in the former channel as well as there being great potential for a discovery in either one at the very early stages of the 14 TeV run.
The existence of a second Higgs doublet in Nature could lead to a cosmological first order electroweak phase transition and explain the origin of the matter-antimatter asymmetry in the Universe. We explore the parameter space of such a two-Higgs-doub
We perform a nonperturbative study of the electroweak phase transition (EWPT) in the two Higgs doublet model (2HDM) by deriving a dimensionally reduced high-temperature effective theory for the model, and matching to known results for the phase diagr
We discuss whether a multi-step electroweak phase transition (EWPT) occurs in two Higgs doublet models (2HDMs). The EWPT is related to interesting phenomena such as baryogenesis and a gravitational wave from it. We examine parameter regions in CP-con
Light new physics weakly coupled to the Higgs can induce a strong first-order electroweak phase transition (EWPT). Here, we argue that scenarios in which the EWPT is driven first-order by a light scalar with mass between $sim 10$ GeV - $m_h/2$ and sm
Higgs sector extensions beyond the Standard Model (BSM) provide additional sources of CP violation and further scalar states that help to trigger a strong first order electroweak phase transition (SFOEWPT) required to generate the observed baryon asy