ﻻ يوجد ملخص باللغة العربية
We obtain an exact result for the non-perturbative quark (antiquark) production rate and its p_T distribution from a constant SU(3) chromo-electric field E^a with arbitary color index $a$ by directly evaluating the path integral. Unlike the WKB tunneling result, which depends only on one gauge invariant quantity |E|, the strength of the chromo-electric field, we find that the exact result for the p_T distribution for quark (antiquark) production rate depends on two independent Casimir (gauge) invariants, E^aE^a and [d_{abc}E^aE^bE^c]^2.
We study the non-perturbative production of gluon pairs from a constant SU(3) chromo-electric background field via the Schwinger mechanism. We fix the covariant background gauge with an arbitrary gauge parameter alpha. We determine the transverse mom
We study the Schwinger mechanism in QCD in the presence of an arbitrary time-dependent chromo-electric background field $E^a(t)$ with arbitrary color index $a$=1,2,...8 in SU(3). We obtain an exact result for the non-perturbative quark (antiquark) pr
We study Schwinger mechanism for gluon pair production in the presence of arbitrary time-dependent chromo-electric background field $E^a(t)$ with arbitrary color index $a$=1,2,...8 in SU(3) by directly evaluating the path integral. We obtain an exact
The existing theory of hard exclusive QCD processes is based on two assumptions: (i) $factorization$ into a $hard,block$ times light front distribution amplitudes (DAs); (ii) use of perturbative gluon exchanges within the hard block. However, unlike
In this work we explore the applicability of a special gluon mass generating mechanism in the context of the linear covariant gauges. In particular, the implementation of the Schwinger mechanism in pure Yang-Mills theories hinges crucially on the inc