ﻻ يوجد ملخص باللغة العربية
We study Schwinger mechanism for gluon pair production in the presence of arbitrary time-dependent chromo-electric background field $E^a(t)$ with arbitrary color index $a$=1,2,...8 in SU(3) by directly evaluating the path integral. We obtain an exact expression for the probability of non-perturbative gluon pair production per unit time per unit volume and per unit transverse momentum $frac{dW}{d^4x d^2p_T}$ from arbitrary $E^a(t)$. We show that the tadpole (or single gluon) effective action does not contribute to the non-perturbative gluon pair production rate $frac{dW}{d^4x d^2p_T}$. We find that the exact result for non-perturbative gluon pair production is independent of all the time derivatives $frac{d^nE^a(t)}{dt^n}$ where $n=1,2,....infty$ and has the same functional dependence on two casimir invariants $[E^a(t)E^a(t)]$ and $[d_{abc}E^a(t)E^b(t)E^c(t)]^2$ as the constant chromo-electric field $E^a$ result with the replacement: $E^a to E^a(t)$. This result may be relevant to study the production of a non-perturbative quark-gluon plasma at RHIC and LHC.
We study the Schwinger mechanism in QCD in the presence of an arbitrary time-dependent chromo-electric background field $E^a(t)$ with arbitrary color index $a$=1,2,...8 in SU(3). We obtain an exact result for the non-perturbative quark (antiquark) pr
We study the non-perturbative production of gluon pairs from a constant SU(3) chromo-electric background field via the Schwinger mechanism. We fix the covariant background gauge with an arbitrary gauge parameter alpha. We determine the transverse mom
We obtain an exact result for the non-perturbative quark (antiquark) production rate and its p_T distribution from a constant SU(3) chromo-electric field E^a with arbitary color index $a$ by directly evaluating the path integral. Unlike the WKB tunne
In this article, we have explored the very important quantity of lepton pair production from a hot and dense QCD medium in presence of an arbitrary magnetic field for simultaneous nonzero values of both the parallel and perpendicular components of mo
We study the vacuum pair production by a time-dependent strong electric field based on the exact WKB analysis. We identify the generic structure of a Stokes graph for systems with the vacuum pair production and show that the number of produced pairs