ﻻ يوجد ملخص باللغة العربية
The existing theory of hard exclusive QCD processes is based on two assumptions: (i) $factorization$ into a $hard,block$ times light front distribution amplitudes (DAs); (ii) use of perturbative gluon exchanges within the hard block. However, unlike DIS and jet physics, the characteristic momentum transfer $Q$ involved in the factorized block is not large enough for this theory to be phenomenologically successful. In this work, we revisit the latter assumption (ii), by explicitly calculating the $instanton-induced$ contributions to the hard block, and show that they contribute substantially to the vector, scalar and gravitational form factors of the pseudoscalar, scalar and vector mesons, over a wide range of momentum transfer.
We have started a program to compute the electromagnetic form factors of mesons. We discuss the techniques used to compute the pion form factor and present preliminary results computed with domain wall valence fermions on MILC asqtad lattices, as wel
Precise theoretical predictions derived from the Standard Model are a key ingredient in searches for new physics in the flavor sector. The large mass and long lifetime of the $b$ quark make processes involving $b$ quarks of particular interest. We us
We obtain an exact result for the non-perturbative quark (antiquark) production rate and its p_T distribution from a constant SU(3) chromo-electric field E^a with arbitary color index $a$ by directly evaluating the path integral. Unlike the WKB tunne
We determine the nucleon neutral weak electromagnetic form factors $G^{Z,p(n)}_{E,M}$ by combining results from light-front holographic QCD and lattice QCD calculations. We deduce nucleon electromagnetic form factors from light-front holographic QCD
Scale factor matrices relating mesonic fields in chiral Lagrangians and quark-level operators of QCD sum-rules are shown to be constrained by chiral symmetry, resulting in universal scale factors for each chiral nonet. Built upon this interplay betwe