ﻻ يوجد ملخص باللغة العربية
A widely used relativistic Fermi gas model and plane-wave impulse approximation are tested against electron-nucleus scattering data. Inclusive quasi-elastic cross section are calculated and compared with high-precision data for C, O, and Ca. A dependence of agreement between calculated cross section and data on a momentum transfer is shown. Results for the C(nu_mu,mu) reaction are presented and compared with experimental data of the LSND collaboration.
Neutrino-nucleus quasielastic scattering is studied in the plane wave impulse approximation for three nuclear models: the relativistic Fermi gas (RFG), the independent-particle shell model (IPSM) and the natural orbitals (NO) model with Lorentzian de
Full Faddeev-type calculations are performed for $^{11}$Be breakup on proton target at 38.4, 100, and 200 MeV/u incident energies. The convergence of the multiple scattering expansion is investigated. The results are compared with those of other fram
Relativistic impulse approximation (RIA) has been widely used in atomic, condensed matter, nuclear, and elementary particle physics. In former treatments of RIA formulation, differential cross sections for Compton scattering processes were factorized
We develop an asymmetric relativistic Fermi gas model for the study of the electroweak nuclear response in the quasielastic region. The model takes into account the differences between neutron and proton densities in asymmetric (N > Z) nuclei, as wel
The validity of dilute gas approximation is explored by making use of the large-sized instanton in quantum mechanical model. It is shown that the Euclidean probability amplitude derived through a dilute gas approximation not only cannot explain the r