ﻻ يوجد ملخص باللغة العربية
Full Faddeev-type calculations are performed for $^{11}$Be breakup on proton target at 38.4, 100, and 200 MeV/u incident energies. The convergence of the multiple scattering expansion is investigated. The results are compared with those of other frameworks like Distorted Wave Impulse Approximation that are based on an incomplete and truncated multiple scattering expansion.
Background: Proton-induced nucleon knockout $(p,pN)$ reactions have been successfully used to study the single-particle nature of stable nuclei in normal kinematics with the distorted-wave impulse approximation (DWIA) framework. Recently, these react
Both ($e$,$ep$) and ($p$,$2p$) reactions have been performed to study the proton single-particle character of nuclear states with its related spectroscopic factor. Recently, the dispersive optical model (DOM) was applied to the ($e$,$ep$) analysis re
Superscaling of the quasielastic cross section in charged current neutrino-nucleus reactions at energies of a few GeV is investigated within the framework of the relativistic impulse approximation. Several approaches are used to describe final state
Relativistic impulse approximation (RIA) has been widely used in atomic, condensed matter, nuclear, and elementary particle physics. In former treatments of RIA formulation, differential cross sections for Compton scattering processes were factorized
A widely used relativistic Fermi gas model and plane-wave impulse approximation are tested against electron-nucleus scattering data. Inclusive quasi-elastic cross section are calculated and compared with high-precision data for C, O, and Ca. A depend