ترغب بنشر مسار تعليمي؟ اضغط هنا

Relativistic Impulse Approximation in Compton Scattering

94   0   0.0 ( 0 )
 نشر من قبل Chenkai Qiao
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Relativistic impulse approximation (RIA) has been widely used in atomic, condensed matter, nuclear, and elementary particle physics. In former treatments of RIA formulation, differential cross sections for Compton scattering processes were factorized into atomic Compton profiles by performing further simplified approximations in the integration. In this study, we develop an ``exact numerical method without using any further simplified approximations or factorization treatments. The validity of the approximations and factorizations used in former RIA treatments can be tested using our approach. Calculations for C, Cu, Ge, and Xe atomic systems are carried out using Dirac-Fock wavefunctions, and comparisons between the proposed approach and former treatments of RIA are performed and discussed in detail. Numerical results indicate that these simplified approximations work reasonably in the Compton peak region, and our results have little difference with the best of the former RIA treatments in the entire energy region. While in regions far from the Compton peak, the RIA results become inaccurate, even when our ``exact numerical treatment is used.



قيم البحث

اقرأ أيضاً

94 - J.A. Caballero 2005
Superscaling of the quasielastic cross section in charged current neutrino-nucleus reactions at energies of a few GeV is investigated within the framework of the relativistic impulse approximation. Several approaches are used to describe final state interactions and comparisons are made with the plane wave approximation. Superscaling is very successful in all cases. The scaling function obtained using a relativistic mean field for the final states shows an asymmetric shape with a long tail extending towards positive values of the scaling variable, in excellent agreement with the behavior presented by the experimental scaling function.
The millicharged particle has become an attractive topic to probe physics beyond the Standard Model. In direct detection experiments, the parameter space of millicharged particles can be constrained from the atomic ionization process. In this work, w e develop the relativistic impulse approximation (RIA) approach, which can duel with atomic many-body effects effectively, in the atomic ionization process induced by millicharged particles. The formulation of RIA in the atomic ionization induced by millicharged particles is derived, and the numerical calculations are obtained and compared with those from free electron approximation and equivalent photon approximation. Concretely, the atomic ionizations induced by mllicharged dark matter particles and millicharged neutrinos in high-purity germanium (HPGe) and liquid xenon (LXe) detectors are carefully studied in this work. The differential cross sections, reaction event rates in HPGe and LXe detectors, and detecting sensitivities on dark matter particle and neutrino millicharge in next-generation HPGe and LXe based experiments are estimated and calculated to give a comprehensive study. Our results suggested that the next-generation experiments would improve 2-3 orders of magnitude on dark matter particle millicharge $delta_{chi}$ than the current best experimental bounds in direct detection experiments. Furthermore, the next-generation experiments would also improve 2-3 times on neutrino millicharge $delta_{ u}$ than the current experimental bounds.
The electromagnetic interactions of a relativistic two-body bound state are formulated in three dimensions using an equal-time (ET) formalism. This involves a systematic reduction of four-dimensional dynamics to a three-dimensional form by integratin g out the time components of relative momenta. A conserved electromagnetic current is developed for the ET formalism. It is shown that consistent truncations of the electromagnetic current and the $NN$ interaction kernel may be made, order-by-order in the coupling constants, such that appropriate Ward-Takahashi identities are satisfied. A meson-exchange model of the $NN$ interaction is used to calculate deuteron vertex functions. Calculations of electromagnetic form factors for elastic scattering of electrons by deuterium are performed using an impulse-approximation current. Negative-energy components of the deuterons vertex function and retardation effects in the meson-exchange interaction are found to have only minor effects on the deuteron form factors.
166 - Z.P. Li , G.C. Hillhouse , 2008
We present the first study to examine the validity of the relativistic impulse approximation (RIA) for describing elastic proton-nucleus scattering at incident laboratory kinetic energies lower than 200 MeV. For simplicity we choose a $^{208}$Pb targ et, which is a spin-saturated spherical nucleus for which reliable nuclear structure models exist. Microscopic scalar and vector optical potentials are generated by folding invariant scalar and vector scattering nucleon-nucleon (NN) amplitudes, based on our recently developed relativistic meson-exchange model, with Lorentz scalar and vector densities resulting from the accurately calibrated PK1 relativistic mean field model of nuclear structure. It is seen that phenomenological Pauli blocking (PB) effects and density-dependent corrections to $sigma$N and $omega$N meson-nucleon coupling constants modify the RIA microscopic scalar and vector optical potentials so as to provide a consistent and quantitative description of all elastic scattering observables, namely total reaction cross sections, differential cross sections, analyzing powers and spin rotation functions. In particular, the effect of PB becomes more significant at energies lower than 200 MeV, whereas phenomenological density-dependent corrections to the NN interaction {it also} play an increasingly important role at energies lower than 100 MeV.
56 - S.G. Bondarenko 2006
The electrodisintegration of the deuteron in the frame of the Bethe-Salpeter approach with a separable kernel of the nucleon-nucleon interaction is considered. This conception keeps the covariance of a description of the process. A comparison of rela tivistic and nonrelativistic calculations is presented. The factorization of the cross section of the reaction in the impulse approximation is obtained by analytical calculations. It is shown that the photon-neutron interaction plays an important role.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا