ﻻ يوجد ملخص باللغة العربية
The theoretical predictions are given for the forward limit of the unpolarized spin-flip isovector generalized parton distribution function $(E^u - E^d)(x, xi, t)$ within the framework of the chiral quark soliton model, with full inclusion of the polarization of Dirac sea quarks. We observe that $[(H^u - H^d) + (E^u - E^d)](x,0,0)$ has a sharp peak around $x=0$, which we interpret as a signal of the importance of the pionic $q bar{q}$ excitation with large spatial extension in the transverse direction. Another interesting indication given by the predicted distribution in combination with Jis angular momentum sum rule is that the $bar{d}$-quark carries more angular momentum than the $bar{u}$-quark in the proton, which may have some relation with the physics of the violation of the Gottfried sum rule.
The unpolarized spin-flip isoscalar generalized parton distribution function (E^u+E^d)(x,xi,t) is studied in the large-Nc limit at a low normalization point in the framework of the chiral quark-soliton model. This is the first study of generalized pa
In this paper we present the derivation as well as the numerical results for the electromagnetic form factors of the nucleon within the chiral quark soliton model in the semiclassical quantization scheme. The model is based on semibosonized SU(2) Nam
Polarized parton distribution functions are determined by using world data from the longitudinally polarized deep inelastic scattering experiments. A new parametrization of the parton distribution functions is adopted by taking into account the posit
The nucleon form factors of the energy-momentum tensor are studied in the large-Nc limit in the framework of the chiral quark-soliton model.
A new and simple statistical approach is performed to calculate the parton distribution functions (PDFs) of the nucleon in terms of light-front kinematic variables. We do not put in any extra arbitrary parameter or corrected term by hand, which guara