ﻻ يوجد ملخص باللغة العربية
The unpolarized spin-flip isoscalar generalized parton distribution function (E^u+E^d)(x,xi,t) is studied in the large-Nc limit at a low normalization point in the framework of the chiral quark-soliton model. This is the first study of generalized parton distribution functions in this model, which appear only at the subleading order in the large-Nc limit. Particular emphasis is put therefore on the demonstration of the theoretical consistency of the approach. The forward limit of (E^u+E^d)(x,xi,t) of which only the first moment -- the anomalous isoscalar magnetic moment of the nucleon -- is known phenomenologically, is computed numerically. Observables sensitive to (E^u+E^d)(x,xi,t) are discussed.
The theoretical predictions are given for the forward limit of the unpolarized spin-flip isovector generalized parton distribution function $(E^u - E^d)(x, xi, t)$ within the framework of the chiral quark soliton model, with full inclusion of the pol
In this paper we present the derivation as well as the numerical results for the electromagnetic form factors of the nucleon within the chiral quark soliton model in the semiclassical quantization scheme. The model is based on semibosonized SU(2) Nam
The nucleon form factors of the energy-momentum tensor are studied in the large-Nc limit in the framework of the chiral quark-soliton model.
The first moment the chirality-odd twist-3 parton distribution $e(x)$ is related to the pion-nucleon $sigma$-term which is important for phenomenology. However, the possible existence of a singular contribution proportional to $delta(x)$ in the distr
We calculate the axial form factor in the chiral quark soliton (semibosonized Nambu - Jona-Lasinio) model using the semiclassical quantization scheme in the next to leading order in angular velocity. The obtained axial form factor is in a good absolu