ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarized Parton Distribution Functions in the Nucleon

112   0   0.0 ( 0 )
 نشر من قبل ul
 تاريخ النشر 2000
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Polarized parton distribution functions are determined by using world data from the longitudinally polarized deep inelastic scattering experiments. A new parametrization of the parton distribution functions is adopted by taking into account the positivity and the counting rule. From the fit to the asymmetry data A_1, the polarized distribution functions of u and d valence quarks, sea quarks, and gluon are obtained. The results indicate that the quark spin content is DeltaSigma=0.20 and 0.05 in the leading order (LO) and the next-to-leading-order (NLO) MS-bar scheme, respectively. However, if x dependence of the sea-quark distribution is fixed at small x by perturbative QCD and Regge theory, it becomes Delta Sigma=0.24 ~ 0.28 in the NLO. The small-x behavior cannot be uniquely determined by the existing data, which indicates the importance of future experiments. From our analysis, we propose one set of LO distributions and two sets of NLO ones as the longitudinally-polarized parton distribution functions.



قيم البحث

اقرأ أيضاً

A new and simple statistical approach is performed to calculate the parton distribution functions (PDFs) of the nucleon in terms of light-front kinematic variables. We do not put in any extra arbitrary parameter or corrected term by hand, which guara ntees the stringency of our approach. Analytic expressions of the $x$-dependent PDFs are obtained in the whole $x$ region [0,1], and some features, especially the low-$x$ rise, are more agreeable with experimental data than those in some previous instant-form statistical models in the infinite-momentum frame (IMF). Discussions on heavy-flavored PDFs are also presented.
We present results on the quark unpolarized, helicity and transversity parton distributions functions of the nucleon. We use the quasi-parton distribution approach within the lattice QCD framework and perform the computation using an ensemble of twis ted mass fermions with the strange and charm quark masses tuned to approximately their physical values and light quark masses giving pion mass of 260 MeV. We use hierarchical probing to evaluate the disconnected quark loops. We discuss identification of ground state dominance, the Fourier transform procedure and convergence with the momentum boost. We find non-zero results for the disconnected isoscalar and strange quark distributions. The determination of the quark parton distribution and in particular the strange quark contributions that are poorly known provide valuable input to the structure of the nucleon.
Ioffe-time distributions, which are functions of the Ioffe-time $ u$, are the Fourier transforms of parton distribution functions with respect to the momentum fraction variable $x$. These distributions can be obtained from suitable equal time, quark bilinear hadronic matrix elements which can be calculated from first principles in lattice QCD, as it has been recently argued. In this talk I present the first numerical calculation of the Ioffe-time distributions of the nucleon in the quenched approximation.
We present the first lattice-QCD calculation of the nucleon isovector unpolarized parton distribution functions (PDFs) at the physical-continuum limit using Large-Momentum Effective Theory (LaMET). The lattice results are calculated using ensembles w ith multiple sea pion masses with the lightest one around 135~MeV, 3 lattice spacings $ain[0.06,0.12]$~fm, and multiple volumes with $M_pi L$ ranging 3.3 to 5.5. We perform a simultaneous chiral-continuum extrapolation to obtain RI/MOM renormalized nucleon matrix elements with various Wilson-link displacements in the continuum limit at physical pion mass. Then, we apply one-loop perturbative matching to the quasi-PDFs to obtain the lightcone PDFs. We find the lattice-spacing dependence to be much larger than the dependence on pion mass and lattice volume for these LaMET matrix elements. Our physical-continuum limit unpolarized isovector nucleon PDFs are found to be consistent with global-PDF results.
84 - C. Alexandrou 2020
We present, for the first time, an textit{ab initio} calculation of the individual up, down and strange quark helicity parton distribution functions for the proton. The calculation is performed within the twisted mass clover-improved fermion formulat ion of lattice QCD using one ensemble of dynamical up, down, strange and charm quarks with a pion mass of 260 MeV. The lattice matrix elements are non-perturbatively renormalized and the final results are presented in the $overline{ rm MS}$ scheme at a scale of 2 GeV. We give results on the $Delta u^+(x)$ and $Delta d^+(x)$, including disconnected quark loop contributions, as well as on the $Delta s^+(x)$. For the latter we achieve unprecedented precision compared to the phenomenological estimates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا