ترغب بنشر مسار تعليمي؟ اضغط هنا

Can an invisible Higgs boson be seen via diffraction at the LHC?

49   0   0.0 ( 0 )
 نشر من قبل Mikhail Ryskin G.
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the possibility of observing an `invisible Higgs boson in central exclusive diffractive production at the LHC. We evaluate the cross section using, as a simple example, the Standard Model with a heavy fourth generation, where the invisible decay mode $H to u_4 bar{ u}_4$ dominates, with the heavy neutrino mass $M( u_4) simeq 50$ GeV. We discuss the possible requirements on trigger conditions and the background processes.

قيم البحث

اقرأ أيضاً

In the next-to minimal supersymmetric standard model (NMSSM) one additional singlet-like Higgs boson with small couplings to standard model (SM) particles is introduced. Although the mass can be well below the discovered 125 GeV Higgs boson mass its small couplings may make a discovery at the LHC difficult. We use a novel scanning technique to efficiently scan the whole parameter space and determine the range of cross sections and branching ratios for the light singlet-like Higgs boson below 125 GeV. This allows to determine the perspectives for the future discovery potential at the LHC. Specific LHC benchmark points are selected representing the salient NMSSM features.
The signature produced by the Standard Model Higgs boson in the Vector Boson Fusion (VBF) mechanism is usually pinpointed by requiring two well separated hadronic jets, one of which (at least) of them tends to be in the forward direction. With the in crease of instantaneous luminosity at the LHC, the isolation of the Higgs boson produced with the VBF mechanism is rendered more challenging. In this paper the feasibility of single jet tagging is explored in a high-luminosity scenario. It is demonstrated that the separation in rapidity between the tagging jet and the Higgs boson can be effectively used to isolate the VBF signal. This variable is robust from the experimental and QCD stand points. Single jet tagging allows us to probe the spin-CP quantum numbers of the Higgs boson.
In our work: 0903.2612, we calculate the production rate of single top-Higgs boson in the TC2 model which is a modified version of the original top-technicolor model. The similar process was discussed in arXiv:hep-ph/9905347v2. The TC2 model, as we d iscussed in the introduction part remedies some shortcomings and loophole of the old version. The top-Higgs in the TC2 model is a mixture of the top-Higgs of the toptechnicolor model and that of the ETC model, thus a parameter $epsilon$ is introduced to denote the mixture. Moreover, we vary the mass range of the top-Higgs within 300 to 800 GeV while in arXiv:hep-ph/9905347v2, the mass range was taken as 200 to 400 GeV. In the work, our numerical results show that the production rate of single top-Higgs in the TC2 model is very close to that in the toptecnicolor model within the mass range of 200 to 400 GeV. This manifests that change from the original toptechnicolor model to the new TC2 version does not much affect the production rate of the top-Higgs even though the two top-Higgs in the two models are different. Beyond the 400 GeV, even the TC2 model predicts a negligible production rate at LHC. Since the phenomenological change is indeed not obvious, there is not much new to report. Even though the two models are somehow different, we believe that the result is not worth publishing. Therefore we decide to withdraw our manuscript.
Assuming flat universal extra dimensions, we demonstrate that for a light Higgs boson the process $ppto W^*W^* +X to Higgs,graviscalars +X to invisible+X$ will be observable at the $5 sigma$ level at the LHC for the portion of the Higgs-graviscalar m ixing ($xi$) and effective Planck mass ($M_D$) parameter space where channels relying on visible Higgs decays fail to achieve a $5 sigma$ signal. Further, we show that even for very modest values of $xi$ the invisible decay signal probes to higher $M_D$ than does the ($xi$-independent) jets/$gam$ + missing energy signal from graviton radiation. We also discuss various effects, such as Higgs decay to two graviscalars, that could become important when $m_h/M_D$ is of order 1.
Higgs signatures from the cascade decays of light stops are an interesting possibility in the next to minimal supersymmetric standard model (NMSSM). We investigate the potential reach of the light stop mass at the 13 TeV run of the LHC by means of fi ve NMSSM benchmark points where this signature is dominant. These benchmark points are compatible with current Higgs coupling measurements, LHC constraints, dark matter relic density and direct detection constraints. We consider single and di-lepton search strategies, as well as the jet-substructure technique to reconstruct the Higgs bosons. We find that one can probe stop masses up to 1.2 TeV with 300 $rm fb^{-1}$ luminosity via the di-lepton channel, while with the jet-substructure method, stop masses up to 1 TeV can be probed with 300 $rm fb^{-1}$ luminosity. We also investigate the possibility of the appearance of multiple Higgs peaks over the background in the fat-jet mass distribution, and conclude that such a possibility is viable only at the high luminosity run of 13 TeV LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا