ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the Higgs Boson via VBF with Single Jet Tagging at the LHC

140   0   0.0 ( 0 )
 نشر من قبل Bruce Mellado
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The signature produced by the Standard Model Higgs boson in the Vector Boson Fusion (VBF) mechanism is usually pinpointed by requiring two well separated hadronic jets, one of which (at least) of them tends to be in the forward direction. With the increase of instantaneous luminosity at the LHC, the isolation of the Higgs boson produced with the VBF mechanism is rendered more challenging. In this paper the feasibility of single jet tagging is explored in a high-luminosity scenario. It is demonstrated that the separation in rapidity between the tagging jet and the Higgs boson can be effectively used to isolate the VBF signal. This variable is robust from the experimental and QCD stand points. Single jet tagging allows us to probe the spin-CP quantum numbers of the Higgs boson.



قيم البحث

اقرأ أيضاً

70 - B. Mellado 2004
We report on the potential for the discovery of a Standard Model Higgs boson with the vector boson fusion mechanism in the mass range $115<M_H<500 gev/$c$^2$ with the ATLAS experiment at the LHC. Feasibility studies at hadron level followed by a fast detector simulation have been performed for $Hto W^{(*)}W^{(*)}to l^+l^-sla{p_T}$, $Htogammagamma$ and $Hto ZZto l^+l^-qbar{q}$. The preliminary results obtained here show a large discovery potential in the range $115<M_H<300 gev/$c$^2$. Results obtained with multivariate techniques are reported for a number of channels.
Higgs signatures from the cascade decays of light stops are an interesting possibility in the next to minimal supersymmetric standard model (NMSSM). We investigate the potential reach of the light stop mass at the 13 TeV run of the LHC by means of fi ve NMSSM benchmark points where this signature is dominant. These benchmark points are compatible with current Higgs coupling measurements, LHC constraints, dark matter relic density and direct detection constraints. We consider single and di-lepton search strategies, as well as the jet-substructure technique to reconstruct the Higgs bosons. We find that one can probe stop masses up to 1.2 TeV with 300 $rm fb^{-1}$ luminosity via the di-lepton channel, while with the jet-substructure method, stop masses up to 1 TeV can be probed with 300 $rm fb^{-1}$ luminosity. We also investigate the possibility of the appearance of multiple Higgs peaks over the background in the fat-jet mass distribution, and conclude that such a possibility is viable only at the high luminosity run of 13 TeV LHC.
Determining the spin and the parity quantum numbers of the recently discovered Higgs-like boson at the LHC is a matter of great importance. In this paper, we consider the possibility of using the kinematics of the tagging jets in Higgs production via the vector boson fusion (VBF) process to test the tensor structure of the Higgs-vector boson ($HVV$) interaction and to determine the spin and CP properties of the observed resonance. We show that an anomalous $HVV$ vertex, in particular its explicit momentum dependence, drastically affects the rapidity between the two scattered quarks and their transverse momenta and, hence, the acceptance of the kinematical cuts that allow to select the VBF topology. The sensitivity of these observables to different spin-parity assignments, including the dependence on the LHC center of mass energy, are evaluated. In addition, we show that in associated Higgs production with a vector boson some kinematical variables, such as the invariant mass of the system and the transverse momenta of the two bosons and their separation in rapidity, are also sensitive to the spin--parity assignments of the Higgs--like boson.
We propose a method to probe the coupling of the Higgs to strange quarks by tagging strange jets at future lepton colliders. For this purpose we describe a jet-flavor observable, $J_F$, that is correlated with the flavor of the quark associated with the hard part of the jet. Using this variable, we set up a strangeness tagger aimed at studying the decay $hto sbar{s}$. We determine the sensitivity of our method to the strange Yukawa coupling, and find it to be of the order of the standard-model expectation.
We construct a procedure to separate boosted Higgs bosons decaying into hadrons, from the background due to strong interactions. We employ the Lund jet plane to obtain a theoretically well-motivated representation of the jets of interest and we use t he resulting images as the input to a convolutional neural network classifier. In particular, we consider two different decay modes of the Higgs boson, namely into a pair of bottom quarks or into light jets, against the respective backgrounds. For each case, we consider both a moderate- and high- boost scenario. The performance of the tagger is compared to what is achieved using a traditional single-variable analysis which exploits a QCD inspired color-singlet tagger, namely the jet color ring observable. Furthermore, we study the dependence of the taggers performance on the requirement that the invariant mass of the selected jets should be close to the Higgs mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا