ترغب بنشر مسار تعليمي؟ اضغط هنا

Can we discover a light singlet-like NMSSM Higgs boson at the LHC?

134   0   0.0 ( 0 )
 نشر من قبل Conny Beskidt
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the next-to minimal supersymmetric standard model (NMSSM) one additional singlet-like Higgs boson with small couplings to standard model (SM) particles is introduced. Although the mass can be well below the discovered 125 GeV Higgs boson mass its small couplings may make a discovery at the LHC difficult. We use a novel scanning technique to efficiently scan the whole parameter space and determine the range of cross sections and branching ratios for the light singlet-like Higgs boson below 125 GeV. This allows to determine the perspectives for the future discovery potential at the LHC. Specific LHC benchmark points are selected representing the salient NMSSM features.



قيم البحث

اقرأ أيضاً

The next-to-minimal supersymmetric standard model (NMSSM) with an extended Higgs sector offers one of the Higgs boson as the Standard model (SM) like Higgs with a mass around 125 GeV along with other Higgs bosons with lighter and heavier masses and n ot excluded by any current experiments. At the LHC, phenomenology of these non SM like Higgs bosons is very rich and considerably different from the other supersymmetric models. In this work, assuming one of the Higgs bosons to be the SM like, we revisit the mass spectrum and couplings of non SM like Higgs bosons taking into consideration all existing constraints and identify the relevant region of parameter space. The discovery potential of these non SM like Higgs bosons, apart from their masses, is guided by their couplings with gauge bosons and fermions which are very much parameter space sensitive. We evaluate the rates of productions of these non SM like Higgs bosons at the LHC for a variety of decay channels in the allowed region of the parameter space. Although bb, {tau}{tau} decay modes appear to be the most promising, it is observed that for a substantial region of parameter space the two-photon decay mode has a remarkably large rate. In this work we emphasize that this diphoton mode can be exploited to find the NMSSM Higgs signal and can also be potential avenue to distinguish the NMSSM from the MSSM. In addition, we discuss briefly the various detectable signals of these non SM Higgs bosons at the LHC.
135 - A. De Roeck 2002
We summarize the possible processes which may be used to search for a Higgs boson, of mass in the range 114-130 GeV, at the LHC. We discuss, in detail, two processes with rapidity gaps: exclusive Higgs production with tagged outgoing protons and prod uction by Weak Boson Fusion, in each case taking H -> bbbar as the signal. We make an extensive study of all possible bbbar backgrounds, and discuss the relevant experimental issues. We emphasize the special features of these signals, and of their background processes, and show that they could play an important role in identifying a light Higgs boson at the LHC.
We study the Higgs boson $(h)$ decay to two light jets at the 14 TeV High-Luminosity-LHC (HL-LHC), where a light jet ($j$) represents any non-flavor tagged jet from the observational point of view. The decay mode $hto gg$ is chosen as the benchmark s ince it is the dominant channel in the Standard Model (SM), but the bound obtained is also applicable to the light quarks $(j=u,d,s)$. We estimate the achievable bounds on the decay branching fractions through the associated production $Vh (V=W^pm,Z)$. Events of the Higgs boson decaying into heavy (tagged) or light (un-tagged) jets are correlatively analyzed. We find that with 3000 fb$^{-1}$ data at the HL-LHC, we should expect approximately $1sigma$ statistical significance on the SM $Vh(gg)$ signal in this channel. This corresponds to a reachable upper bound ${rm BR}(hto jj) leq 4~ {rm BR}^{SM}(hto gg)$ at $95%$ confidence level. A consistency fit also leads to an upper bound ${rm BR}(hto cc) < 15~ {rm BR}^{SM}(hto cc)$ at $95%$ confidence level. The estimated bound may be further strengthened by adopting multiple variable analyses, or adding other production channels.
Higgs signatures from the cascade decays of light stops are an interesting possibility in the next to minimal supersymmetric standard model (NMSSM). We investigate the potential reach of the light stop mass at the 13 TeV run of the LHC by means of fi ve NMSSM benchmark points where this signature is dominant. These benchmark points are compatible with current Higgs coupling measurements, LHC constraints, dark matter relic density and direct detection constraints. We consider single and di-lepton search strategies, as well as the jet-substructure technique to reconstruct the Higgs bosons. We find that one can probe stop masses up to 1.2 TeV with 300 $rm fb^{-1}$ luminosity via the di-lepton channel, while with the jet-substructure method, stop masses up to 1 TeV can be probed with 300 $rm fb^{-1}$ luminosity. We also investigate the possibility of the appearance of multiple Higgs peaks over the background in the fat-jet mass distribution, and conclude that such a possibility is viable only at the high luminosity run of 13 TeV LHC.
We analyse the phenomenological implications of a light Higgs boson, $h$, within the CP-conserving 2-Higgs Doublet Model (2HDM) Type-I, for the detection prospects of the charged $H^pm$ state at Run II of the Large Hadron Collider (LHC), assuming $sq rt{s}=13$ TeV as energy and ${cal O}(100~{rm fb}^{-1})$ as luminosity. When sufficiently light, this $h$ state can open up the bosonic decay channel $H^pm to W^{pm(*)}h$, which may have a branching ratio significantly exceeding those of the $H^pm to tau u$ and $H^pm to cs$ channels. We perform a broad scan of the 2HDM Type-I parameter space, assuming the heavier of the two CP-even Higgs bosons, $H$, to be the observed SM-like state with a mass near 125 GeV. Through these scans we highlight regions in which $m_{H^pm} < m_t +m_b$ that are still consistent with the most recent limits from experimental searches. We find in these regions that, when the $H^pm to W^{pm(*)}h$ decay mode is the dominant one, the $h$ can be highly fermiophobic, with a considerably large decay rate in the $gammagamma$ channel. This can result in the total cross section of the $sigma(ppto H^pm h to W^{pm(*)} + 4gamma)$ process reaching up to ${cal O}(100~{rm fb})$. We therefore investigate the possibility of observing this spectacular signal at the LHC Run II.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا