ترغب بنشر مسار تعليمي؟ اضغط هنا

Isospin Breaking in $K_{ell 4}$ Decays of the Neutral Kaon

287   0   0.0 ( 0 )
 نشر من قبل Abbas Nehme
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English
 تأليف A. Nehme




اسأل ChatGPT حول البحث

In the presence of photons, the neutral $K_{ell 4}$ decay, $K^0topi^0pi^-ell^+ u_ell$, can be parameterized in terms of three vectorial, one anomalous, and one tensorial form factors. We present here analytic expressions of two vectorial form factors, $f$ and $g$, calculated at one-loop level in the framework of chiral perturbation theory based on the effective Lagrangian including mesons, photons, and leptons. These expressions may then be used to disentangle the Isospin breaking part from the measured form factors and hence improve the accuracy in the determination of $pipi$ scattering parameters from $K_{ell 4}$ experiments.


قيم البحث

اقرأ أيضاً

123 - V. Cuplov , A. Nehme 2003
The charged $K_{ell 4}$ decay, $K^+topi^+pi^-ell^+ u_{ell}$ is studied in the framework of chiral perturbation theory based on the effective Lagrangian including mesons, photons, and leptons. We give analytic expressions for the two vectorial form fa ctors, $f$ and $g$, calculated at one-loop level in the presence of Isospin breaking effects. These expressions may then be used to disentangle the Isospin breaking part from the measured form factors and hence improve the accuracy in the determination of $pipi$ scattering parameters from $K_{ell 4}$ experiments.
Data on Ke4 decays allow one to extract experimental information on the elastic pi pi scattering amplitude near threshold, and to confront the outcome of the analysis with predictions made in the framework of QCD. These predictions concern an isospin symmetric world, while experiments are carried out in the real world, where isospin breaking effects - generated by electromagnetic interactions and by the mass difference of the up and down quarks - are always present. We discuss the corrections required to account for these, so that a meaningful comparison with the predictions becomes possible. In particular, we note that there is a spectacular isospin breaking effect in Ke4 decays. Once it is taken into account, the previous discrepancy between NA48/2 data on Ke4 decays and the prediction of pi pi scattering lengths disappears.
We calculate the signal rate of hypothetical heavy neutral leptons (HNL or sterile neutrinos) from kaon decays expected in the framework of the SHiP experiment. The kaons are produced in the hadronic shower initiated in the beam-dump mode by 400 GeV protons from CERN SPS. For a sufficiently light HNL (when the decays are kinematically allowed) we find kaon decays to be a noticeably richer source of HNL as compared to $D$-meson decays adopted in previous studies of the HNL phenomenology at SHiP. In particular, SHiP is capable of fully exploring the central part of the kinematically allowed region of the HNL mass and mixing with electron and muon neutrinos down to the lower cosmological bound. The latter is associated with HNL decays in the early Universe to energetic products rescattering off and thus destroying light nuclei produced at the primordial nucleosynthesis. A consistency of the HNL model with smaller mixing would require either a hierarchy -- much larger mixing of all the HNL with tau neutrino -- or non-standard cosmology and new ingredients in the HNL sector, closing the room for the minimal non-seesaw type I model with sterile neutrinos lighter than kaons.
106 - A. Nehme 2001
We use chiral perturbation theory to evaluate the scattering amplitude for the process Pi^+ K^- to Pi^+ K^- at leading and next-to-leading orders in the chiral counting and in the presence of isospin breaking effects. We also discuss the influence of the latter on the combination of the S-wave Pi K scattering lengths which is relevant for the 2S - 2P energy levels shift of K Pi atoms.
A novel approach to reconstruct inclusive $bar{B} to X_{s} ell^{+}ell^{-}$ decays is presented. The method relies on isopsin symmetry to extrapolate the semi-inclusive signature $X_{b}to K^{+} ell^{+}ell^{-} X$ to the fully inclusive rate in $B^{+}$ and $B^{0}$ decays. We investigate the possibility to measure branching fractions and other observables such as lepton universality ratios and $CP$ asymmetries. As a proof of concept, fast simulation is used to compare the $X_{b}to K^{+} ell^{+}ell^{-} X$ signature with a fully inclusive approach. Several experimental advantages are seen which have the potential to make measurements of inclusive $bar{B} to X_{s} ell^{+}ell^{-}$ decays tractable at a hadron collider.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا