ﻻ يوجد ملخص باللغة العربية
Data on Ke4 decays allow one to extract experimental information on the elastic pi pi scattering amplitude near threshold, and to confront the outcome of the analysis with predictions made in the framework of QCD. These predictions concern an isospin symmetric world, while experiments are carried out in the real world, where isospin breaking effects - generated by electromagnetic interactions and by the mass difference of the up and down quarks - are always present. We discuss the corrections required to account for these, so that a meaningful comparison with the predictions becomes possible. In particular, we note that there is a spectacular isospin breaking effect in Ke4 decays. Once it is taken into account, the previous discrepancy between NA48/2 data on Ke4 decays and the prediction of pi pi scattering lengths disappears.
Isospin breaking in the Kl4 form factors induced by the difference between charged and neutral pion masses is studied. Starting from suitably subtracted dispersion representations, the form factors are constructed in an iterative way up to two loops
In the presence of photons, the neutral $K_{ell 4}$ decay, $K^0topi^0pi^-ell^+ u_ell$, can be parameterized in terms of three vectorial, one anomalous, and one tensorial form factors. We present here analytic expressions of two vectorial form factors
The charged $K_{ell 4}$ decay, $K^+topi^+pi^-ell^+ u_{ell}$ is studied in the framework of chiral perturbation theory based on the effective Lagrangian including mesons, photons, and leptons. We give analytic expressions for the two vectorial form fa
The approximate symmetry of the strong interactions under isospin transformations is among the most precise tools available to control hadronic matrix elements. It is crucial in extracting fundamental parameters, but also provides avenues for the sea
In this work, we revisit the isospin violating decays of $X(3872)$ in a coupled-channel effective field theory. In the molecular scheme, the $X(3872)$ is interpreted as the bound state of $bar{D}^{*0}D^0/bar{D}^0D^{*0}$ and $D^{*-}D^+/D^-D^{*+}$ chan