ﻻ يوجد ملخص باللغة العربية
We calculate the signal rate of hypothetical heavy neutral leptons (HNL or sterile neutrinos) from kaon decays expected in the framework of the SHiP experiment. The kaons are produced in the hadronic shower initiated in the beam-dump mode by 400 GeV protons from CERN SPS. For a sufficiently light HNL (when the decays are kinematically allowed) we find kaon decays to be a noticeably richer source of HNL as compared to $D$-meson decays adopted in previous studies of the HNL phenomenology at SHiP. In particular, SHiP is capable of fully exploring the central part of the kinematically allowed region of the HNL mass and mixing with electron and muon neutrinos down to the lower cosmological bound. The latter is associated with HNL decays in the early Universe to energetic products rescattering off and thus destroying light nuclei produced at the primordial nucleosynthesis. A consistency of the HNL model with smaller mixing would require either a hierarchy -- much larger mixing of all the HNL with tau neutrino -- or non-standard cosmology and new ingredients in the HNL sector, closing the room for the minimal non-seesaw type I model with sterile neutrinos lighter than kaons.
The extension of the Standard Model with two gauge-singlet Majorana fermions can simultaneously explain two beyond-the-Standard-model phenomena: neutrino masses and oscillations, as well as the origin of the matter-antimatter asymmetry in the Univers
We constrain the lifetime of thermally produced Heavy Neutral Leptons (HNLs) from primordial nucleosynthesis. We show that even a small fraction of mesons present in the primordial plasma leads to the over-production of the primordial helium. This pu
We re-analyze the results of the searches for Heavy Neutral Leptons (HNLs) by the CHARM experiment. We study HNL decay channel $Nto e^{+}e^{-} u/mu^{+}mu^{-} u$ and show that, in addition to the constraints on the HNLs mixings with $ u_e$ or $ u_{mu}
Heavy neutral leptons are predicted in many extensions of the Standard Model with massive neutrinos. If kinematically accessible, they can be copiously produced from kaon and pion decays in atmospheric showers, and subsequently decay inside large neu
New Physics models in which the Standard Model particle content is enlarged via the addition of sterile fermions remain among the most minimal and yet most appealing constructions, particularly since these states are present as building blocks of num