ترغب بنشر مسار تعليمي؟ اضغط هنا

Heavy Neutral Leptons from kaon decays in the SHiP experiment

66   0   0.0 ( 0 )
 نشر من قبل Dmitry Gorbunov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the signal rate of hypothetical heavy neutral leptons (HNL or sterile neutrinos) from kaon decays expected in the framework of the SHiP experiment. The kaons are produced in the hadronic shower initiated in the beam-dump mode by 400 GeV protons from CERN SPS. For a sufficiently light HNL (when the decays are kinematically allowed) we find kaon decays to be a noticeably richer source of HNL as compared to $D$-meson decays adopted in previous studies of the HNL phenomenology at SHiP. In particular, SHiP is capable of fully exploring the central part of the kinematically allowed region of the HNL mass and mixing with electron and muon neutrinos down to the lower cosmological bound. The latter is associated with HNL decays in the early Universe to energetic products rescattering off and thus destroying light nuclei produced at the primordial nucleosynthesis. A consistency of the HNL model with smaller mixing would require either a hierarchy -- much larger mixing of all the HNL with tau neutrino -- or non-standard cosmology and new ingredients in the HNL sector, closing the room for the minimal non-seesaw type I model with sterile neutrinos lighter than kaons.

قيم البحث

اقرأ أيضاً

The extension of the Standard Model with two gauge-singlet Majorana fermions can simultaneously explain two beyond-the-Standard-model phenomena: neutrino masses and oscillations, as well as the origin of the matter-antimatter asymmetry in the Univers e. The parameters of such a model are constrained by the neutrino oscillation data, direct accelerator searches, big bang nucleosynthesis, and requirement of successful baryogenesis. We show that the combination of all these constraints still leaves an allowed region in the parameter space below the kaon mass. This region can be probed by the further searches of NA62, DUNE, or SHiP experiments.
We constrain the lifetime of thermally produced Heavy Neutral Leptons (HNLs) from primordial nucleosynthesis. We show that even a small fraction of mesons present in the primordial plasma leads to the over-production of the primordial helium. This pu ts an upper bound on the lifetime of HNLs $tau_{N}<0.02$ s for masses $m_{N}>m_{pi}$ (as compared to 0.1 s reported previously). In combination with accelerator searches, this allows us to put a new lower bound on the HNLs masses and defining the bottom line for HNL searches at the future Intensity Frontier experiments.
We re-analyze the results of the searches for Heavy Neutral Leptons (HNLs) by the CHARM experiment. We study HNL decay channel $Nto e^{+}e^{-} u/mu^{+}mu^{-} u$ and show that, in addition to the constraints on the HNLs mixings with $ u_e$ or $ u_{mu} $, the same data also implies limits on the HNLs that mix only with $ u_{tau}$ and have masses in the range $380 text{ MeV}<m_{N}lesssim 1.6text{ GeV}$ - the region in the parameter space that was considered in the literature as a target for HNLs searches.
Heavy neutral leptons are predicted in many extensions of the Standard Model with massive neutrinos. If kinematically accessible, they can be copiously produced from kaon and pion decays in atmospheric showers, and subsequently decay inside large neu trino detectors. We perform a search for these long-lived particles using Super-Kamiokande multi-GeV neutrino data and derive stringent limits on the mixing with electron, muon and tau neutrinos as a function of the long-lived particle mass. We also present the limits on the branching ratio versus lifetime plane, which are helpful in determining the constraints in non-minimal models where the heavy neutral leptons have new interactions with the Standard Model.
New Physics models in which the Standard Model particle content is enlarged via the addition of sterile fermions remain among the most minimal and yet most appealing constructions, particularly since these states are present as building blocks of num erous mechanisms of neutrino mass generation. Should the new sterile states have non-negligible mixings to the active (light) neutrinos, and if they are not excessively heavy, one expects important contributions to numerous high-intensity observables, among them charged lepton flavour violating muon decays and transitions, and lepton electric dipole moments. We briefly review the prospects of these minimal SM extensions to several of the latter observables, considering both simple extensions and complete models of neutrino mass generation. We emphasise the existing synergy between different observables at the Intensity Frontier, which will be crucial in unveiling the new model at work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا