ﻻ يوجد ملخص باللغة العربية
We discuss the prospects for measuring the W mass in Run II of the Tevatron and at the LHC. The basic techniques used to measure M_W are described and the statistical, theoretical and detector-related uncertainties are discussed in detail.
At present and future hadron colliders, the precision physics program started in the past will be continued. In particular, a precise determination of the W boson mass will be carried out. This requires the calculation of the radiative corrections an
The impact of higher-order final-state photonic corrections on the precise determination of the W-boson mass at the Tevatron and LHC colliders is evaluated. The W-mass shift from a fit to the transverse mass distribution is found to be about 10 MeV i
I report on a calculation of the inclusive Higgs boson production cross section at hadron colliders at next-to-next-to-leading order in QCD. The result is computed as an expansion about the threshold region. By continuing the expansion to very high o
If the Higgs is produced with a large enough cross section in the {em exclusive} reaction $p + bar{p} to p + H + bar{p}$ it will give rise to a peak at $M_H$ in the {em missing mass} ($MM$) spectrum, calculated from the 4-momenta of the beam particle
Majorana neutrinos in the seesaw model can have sizable mixings through which they can be produced at the Large Hadron Collider (LHC) and show a remarkable Lepton Number Violating (LNV) signature. In this article we study the LNV decay of the W boson