ﻻ يوجد ملخص باللغة العربية
Majorana neutrinos in the seesaw model can have sizable mixings through which they can be produced at the Large Hadron Collider (LHC) and show a remarkable Lepton Number Violating (LNV) signature. In this article we study the LNV decay of the W boson via two almost degenerate heavy on-shell Majorana neutrinos $N_j$, into three charged leptons and a light neutrino. We consider the scenario where the heavy neutrino masses are within $1$ GeV $leq M_N leq 10$ GeV. We evaluated the possibility to measure a LNV oscillation process in such a scenario, namely, the modulation of the quantity $d Gamma/d L$ for the process at the LHC where $W^{pm} to mu^{pm} N to mu^{pm} tau^{pm} W^{mp *}$ $ to mu^{pm} tau^{pm} e^{mp} u_e$. $L$ is the distance within the detector between the two vertices of the process. We found out some realistic conditions under which such a modulation could be probed at the LHC.
We discuss the prospects for measuring the W mass in Run II of the Tevatron and at the LHC. The basic techniques used to measure M_W are described and the statistical, theoretical and detector-related uncertainties are discussed in detail.
We investigate the viability of observing charged Higgs bosons (H^+/-) produced in association with W bosons at the CERN Large Hadron Collider, using the leptonic decay H^+ -> tau^+ nu_tau and hadronic W-decay, within different scenarios of the Minim
In this work, we study the lepton flavor and lepton number violating $B_{c}$ meson decays via two intermediate on-shell Majorana neutrinos $N_j$ into two charged leptons and a charged pion $B_{c}^{pm} to mu^{pm} N_j to mu^{pm} tau^{pm} pi^{mp}$. We
Jet substructure is playing a central role at the Large Hadron Collider (LHC) probing the Standard Model in extreme regions of phase space and providing innovative ways to search for new physics. Analytic calculations of experimentally successful obs
We present total and differential cross sections for W b anti-b and Z b anti-b production at the CERN Large Hadron Collider with a center-of-mass energy of 14 TeV, including Next-to-Leading Order (NLO) QCD corrections and full bottom-quark mass effec