ﻻ يوجد ملخص باللغة العربية
We apply a simple analytical criterion for locating critical temperatures to Potts models on square and triangular lattices. In the self-dual case, i.e. on the square lattice we reproduce known exact values of the critical temperature and derive the internal energy of the model at the critical point. For the Potts model on the triangular lattice we obtain very good numerical estimate of the critical temperature and also of the internal energy at the critical point.
We present a technique, which we call etching, which we use to study the harmonic measure of Fortuin-Kasteleyn clusters in the Q-state Potts model for Q=1-4. The harmonic measure is the probability distribution of random walkers diffusing onto the pe
The invaded cluster algorithm, a new method for simulating phase transitions, is described in detail. Theoretical, albeit nonrigorous, justification of the method is presented and the algorithm is applied to Potts models in two and three dimensions.
We study quantum critical behavior in three dimensional lattice Gross-Neveu models containing two massless Dirac fermions. We focus on two models with SU(2) flavor symmetry and either a $Z_2$ or a U(1) chiral symmetry. Both models could not be studie
We build the Z$_{3}$ invariants fusion rules associated to the (D$_{4}$,A$_{6}$) conformal algebra. This algebra is known to describe the tri-critical Potts model. The 4-pt correlation functions of critical fields are developed in the bootstrap appro
We revisit the issue of worldline formulations for the q-state Potts model and discuss a worldline representation in arbitrary dimensions which also allows for magnetic terms. For vanishing magnetic field we implement a Hodge decomposition for resolv