ﻻ يوجد ملخص باللغة العربية
We study quantum critical behavior in three dimensional lattice Gross-Neveu models containing two massless Dirac fermions. We focus on two models with SU(2) flavor symmetry and either a $Z_2$ or a U(1) chiral symmetry. Both models could not be studied earlier due to sign problems. We use the fermion bag approach which is free of sign problems and compute critical exponents at the phase transitions. We estimate $ u = 0.83(1)$, $eta = 0.62(1)$, $eta_psi = 0.38(1)$ in the $Z_2$ and $ u = 0.849(8)$, $eta = 0.633(8)$, $eta_psi = 0.373(3)$ in the U(1) model.
We study the chiral Ising, the chiral XY and the chiral Heisenberg models at four-loop order with the perturbative renormalization group in $4-epsilon$ dimensions and compute critical exponents for the Gross-Neveu-Yukawa fixed points to order $mathca
We construct a Hamiltonian lattice regularisation of the $N$-flavour Gross-Neveu model that manifestly respects the full $mathsf{O}(2N)$ symmetry, preventing the appearance of any unwanted marginal perturbations to the quantum field theory. In the co
We study the two-dimensional lattice Gross--Neveu model with Wilson twisted mass fermions in order to explore the phase structure in this setup. In particular, we investigate the behaviour of the phase transitions found earlier with standard Wilson f
We study the nature of the phase diagram of three-dimensional lattice models in the presence of nonabelian gauge symmetries. In particular, we consider a paradigmatic model for the Higgs mechanism, lattice scalar chromodynamics with N_f flavors, char
Dirac and Weyl fermions appear as quasi-particle excitations in many different condensed-matter systems. They display various quantum transitions which represent unconventional universality classes related to the variants of the Gross-Neveu model. In