ﻻ يوجد ملخص باللغة العربية
The invaded cluster algorithm, a new method for simulating phase transitions, is described in detail. Theoretical, albeit nonrigorous, justification of the method is presented and the algorithm is applied to Potts models in two and three dimensions. The algorithm is shown to be useful for both first-order and continuous transitions and evidently provides an efficient way to distinguish between these possibilities. The dynamic properties of the invaded cluster algorithm are studied. Numerical evidence suggests that the algorithm has no critical slowing for Ising models.
We apply a simple analytical criterion for locating critical temperatures to Potts models on square and triangular lattices. In the self-dual case, i.e. on the square lattice we reproduce known exact values of the critical temperature and derive the
Potts spin systems play a fundamental role in statistical mechanics and quantum field theory, and can be studied within the spin, the Fortuin-Kasteleyn (FK) bond or the $q$-flow (loop) representation. We introduce a Loop-Cluster (LC) joint model of b
We study the stochastic dynamics of infinitely many globally interacting $q$-state units on a ring that is externally driven. While repulsive interactions always lead to uniform occupations, attractive interactions give rise to much richer phenomena:
We consider the problem of inferring a graphical Potts model on a population of variables, with a non-uniform number of Potts colors (symbols) across variables. This inverse Potts problem generally involves the inference of a large number of paramete
We study the sign distribution of generalized magnetic susceptibilities in the temperature-external magnetic field plane using the three-dimensional three-state Potts model. We find that the sign of odd-order susceptibility is opposite in the symmetr