ترغب بنشر مسار تعليمي؟ اضغط هنا

Invaded cluster algorithm for Potts models

75   0   0.0 ( 0 )
 نشر من قبل Jon Machta
 تاريخ النشر 1996
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The invaded cluster algorithm, a new method for simulating phase transitions, is described in detail. Theoretical, albeit nonrigorous, justification of the method is presented and the algorithm is applied to Potts models in two and three dimensions. The algorithm is shown to be useful for both first-order and continuous transitions and evidently provides an efficient way to distinguish between these possibilities. The dynamic properties of the invaded cluster algorithm are studied. Numerical evidence suggests that the algorithm has no critical slowing for Ising models.



قيم البحث

اقرأ أيضاً

339 - P. Sawicki 1998
We apply a simple analytical criterion for locating critical temperatures to Potts models on square and triangular lattices. In the self-dual case, i.e. on the square lattice we reproduce known exact values of the critical temperature and derive the internal energy of the model at the critical point. For the Potts model on the triangular lattice we obtain very good numerical estimate of the critical temperature and also of the internal energy at the critical point.
Potts spin systems play a fundamental role in statistical mechanics and quantum field theory, and can be studied within the spin, the Fortuin-Kasteleyn (FK) bond or the $q$-flow (loop) representation. We introduce a Loop-Cluster (LC) joint model of b ond-occupation variables interacting with $q$-flow variables, and formulate a LC algorithm that is found to be in the same dynamical universality as the celebrated Swendsen-Wang algorithm. This leads to a theoretical unification for all the representations, and numerically, one can apply the most efficient algorithm in one representation and measure physical quantities in others. Moreover, by using the LC scheme, we construct a hierarchy of geometric objects that contain as special cases the $q$-flow clusters and the backbone of FK clusters, the exact values of whose fractal dimensions in two dimensions remain as an open question. Our work not only provides a unified framework and an efficient algorithm for the Potts model, but also brings new insights into rich geometric structures of the FK clusters.
We study the stochastic dynamics of infinitely many globally interacting $q$-state units on a ring that is externally driven. While repulsive interactions always lead to uniform occupations, attractive interactions give rise to much richer phenomena: We analytically characterize a Hopf bifurcation which separates a high-temperature regime of uniform occupations from a low-temperature one where all units coalesce into a single state. For odd $q$ below the critical temperature starts a synchronization regime which ends via a second phase transition at lower temperatures, while for even $q$ this intermediate phase disappears. We find that interactions have no effects except below critical temperature for attractive interactions. A thermodynamic analysis reveals that the dissipated work is reduced in this regime, whose temperature range is shown to decrease as $q$ increases. The $q$-dependence of the power-efficiency trade-off is also analyzed.
We consider the problem of inferring a graphical Potts model on a population of variables, with a non-uniform number of Potts colors (symbols) across variables. This inverse Potts problem generally involves the inference of a large number of paramete rs, often larger than the number of available data, and, hence, requires the introduction of regularization. We study here a double regularization scheme, in which the number of colors available to each variable is reduced, and interaction networks are made sparse. To achieve this color compression scheme, only Potts states with large empirical frequency (exceeding some threshold) are explicitly modeled on each site, while the others are grouped into a single state. We benchmark the performances of this mixed regularization approach, with two inference algorithms, the Adaptive Cluster Expansion (ACE) and the PseudoLikelihood Maximization (PLM) on synthetic data obtained by sampling disordered Potts models on an Erdos-Renyi random graphs. We show in particular that color compression does not affect the quality of reconstruction of the parameters corresponding to high-frequency symbols, while drastically reducing the number of the other parameters and thus the computational time. Our procedure is also applied to multi-sequence alignments of protein families, with similar results.
We study the sign distribution of generalized magnetic susceptibilities in the temperature-external magnetic field plane using the three-dimensional three-state Potts model. We find that the sign of odd-order susceptibility is opposite in the symmetr ic (disorder) and broken (order) phases, but that of the even-order one remains positive when it is far away from the phase boundary. When the critical point is approached from the crossover side, negative fourth-order magnetic susceptibility is observable. It is also demonstrated that non-monotonic behavior occurs in the temperature dependence of the generalized susceptibilities of the energy. The finite-size scaling behavior of the specific heat in this model is mainly controlled by the critical exponent of the magnetic susceptibility in the three-dimensional Ising universality class.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا