ترغب بنشر مسار تعليمي؟ اضغط هنا

Critical exponents of the three-dimensional classical plane rotator model on the sc lattice from a high temperature series analysis

56   0   0.0 ( 0 )
 نشر من قبل ul
 تاريخ النشر 1993
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High temperature series expansions of the spin-spin correlation function for the plane rotator (or XY) model on the sc lattice are extended by three terms through order $beta^{17}$. Tables of the expansion coefficients are reported for the correlation function spherical moments of order $l=0,1,2$. Our analysis of the series leads to fairly accurate estimates of the critical parameters.



قيم البحث

اقرأ أيضاً

352 - Raghav G. Jha 2020
We consider the two-dimensional classical XY model on a square lattice in the thermodynamic limit using tensor renormalization group and precisely determine the critical temperature corresponding to the Berezinskii-Kosterlitz-Thouless (BKT) phase tra nsition to be 0.89290(5) which is an improvement compared to earlier studies using tensor network methods.
We calculate spectral functions of the relativistic $O(4)$ model from real-time lattice simulations in classical-statistical field theory. While in the low and high temperature phase of the model, the spectral functions of longitudinal $(sigma)$ and transverse $(pi)$ modes are well described by relativistic quasi-particle peaks, we find a highly non-trivial behavior of the spectral functions in the cross over region, where additional structures appear. Similarly, we observe a significant broadening of the quasi-particle peaks, when the amount explicit $O(4)$ symmetry breaking is reduced. We further demonstrate that in the vicinity of the $O(4)$ critical point, the spectral functions develop an infrared power law associated with the critical dynamics, and comment on the extraction of the dynamical critical exponent $z$ from our simulations.
A modified three-dimensional mean spherical model with a L-layer film geometry under Neumann-Neumann boundary conditions is considered. Two spherical fields are present in the model: a surface one fixes the mean square value of the spins at the bound aries at some $rho > 0$, and a bulk one imposes the standard spherical constraint (the mean square value of the spins in the bulk equals one). The surface susceptibility $chi_{1,1}$ has been evaluated exactly. For $rho =1$ we find that $chi_{1,1}$ is finite at the bulk critical temperature $T_c$, in contrast with the recently derived value $gamma_{1,1}=1$ in the case of just one global spherical constraint. The result $gamma_{1,1}=1$ is recovered only if $rho =rho_c= 2-(12 K_c)^{-1}$, where $K_c$ is the dimensionless critical coupling. When $rho > rho_c$, $chi_{1,1}$ diverges exponentially as $Tto T_c^{+}$. An effective hamiltonian which leads to an exactly solvable model with $gamma_{1,1}=2$, the value for the $nto infty $ limit of the corresponding O(n) model, is proposed too.
We discuss universal and non-universal critical exponents of a three dimensional Ising system in the presence of weak quenched disorder. Both experimental, computational, and theoretical results are reviewed. Special attention is paid to the results obtained by the field theoretical renormalization group approach. Different renormalization schemes are considered putting emphasis on analysis of divergent series obtained.
We study quantum critical behavior in three dimensional lattice Gross-Neveu models containing two massless Dirac fermions. We focus on two models with SU(2) flavor symmetry and either a $Z_2$ or a U(1) chiral symmetry. Both models could not be studie d earlier due to sign problems. We use the fermion bag approach which is free of sign problems and compute critical exponents at the phase transitions. We estimate $ u = 0.83(1)$, $eta = 0.62(1)$, $eta_psi = 0.38(1)$ in the $Z_2$ and $ u = 0.849(8)$, $eta = 0.633(8)$, $eta_psi = 0.373(3)$ in the U(1) model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا