ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface critical exponents for a three-dimensional modified spherical model

79   0   0.0 ( 0 )
 نشر من قبل Daniel
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A modified three-dimensional mean spherical model with a L-layer film geometry under Neumann-Neumann boundary conditions is considered. Two spherical fields are present in the model: a surface one fixes the mean square value of the spins at the boundaries at some $rho > 0$, and a bulk one imposes the standard spherical constraint (the mean square value of the spins in the bulk equals one). The surface susceptibility $chi_{1,1}$ has been evaluated exactly. For $rho =1$ we find that $chi_{1,1}$ is finite at the bulk critical temperature $T_c$, in contrast with the recently derived value $gamma_{1,1}=1$ in the case of just one global spherical constraint. The result $gamma_{1,1}=1$ is recovered only if $rho =rho_c= 2-(12 K_c)^{-1}$, where $K_c$ is the dimensionless critical coupling. When $rho > rho_c$, $chi_{1,1}$ diverges exponentially as $Tto T_c^{+}$. An effective hamiltonian which leads to an exactly solvable model with $gamma_{1,1}=2$, the value for the $nto infty $ limit of the corresponding O(n) model, is proposed too.



قيم البحث

اقرأ أيضاً

We discuss universal and non-universal critical exponents of a three dimensional Ising system in the presence of weak quenched disorder. Both experimental, computational, and theoretical results are reviewed. Special attention is paid to the results obtained by the field theoretical renormalization group approach. Different renormalization schemes are considered putting emphasis on analysis of divergent series obtained.
254 - H. W. Diehl , M. Shpot 1998
The massive field-theory approach for studying critical behavior in fixed space dimensions $d<4$ is extended to systems with surfaces.This enables one to study surface critical behavior directly in dimensions $d<4$ without having to resort to the $ep silon$ expansion. The approach is elaborated for the representative case of the semi-infinite $|bbox{phi}|^4$ $n$-vector model with a boundary term ${1/2} c_0int_{partial V}bbox{phi}^2$ in the action. To make the theory uv finite in bulk dimensions $3le d<4$, a renormalization of the surface enhancement $c_0$ is required in addition to the standard mass renormalization. Adequate normalization conditions for the renormalized theory are given. This theory involves two mass parameter: the usual bulk `mass (inverse correlation length) $m$, and the renormalized surface enhancement $c$. Thus the surface renormalization factors depend on the renormalized coupling constant $u$ and the ratio $c/m$. The special and ordinary surface transitions correspond to the limits $mto 0$ with $c/mto 0$ and $c/mtoinfty$, respectively. It is shown that the surface-enhancement renormalization turns into an additive renormalization in the limit $c/mtoinfty$. The renormalization factors and exponent functions with $c/m=0$ and $c/m=infty$ that are needed to determine the surface critical exponents of the special and ordinary transitions are calculated to two-loop order. The associated series expansions are analyzed by Pade-Borel summation techniques. The resulting numerical estimates for the surface critical exponents are in good agreement with recent Monte Carlo simulations. This also holds for the surface crossover exponent $Phi$.
We provide general formulae for the configurational exponents of an arbitrary polymer network connected to the surface of an arbitrary wedge of the two-dimensional plane, where the surface is allowed to assume a general mixture of boundary conditions on either side of the wedge. We report on a comprehensive study of a linear chain by exact enumeration, with various attachments of the walks ends to the surface, in wedges of angles $pi/2$ and $pi$, with general mixed boundary conditions.
We present mathematical details of derivation of the critical exponents for the free energy and magnetization in the vicinity of the Gaussian fixed point of renormalization. We treat the problem in general terms and do not refer to particular models of interaction energy. We discuss the case of arbitrary dispersion of the fixed point.
The paramagnetic-to-ferromagnetic phase transition is believed to proceed through a critical point, at which power laws and scaling invariance, associated with the existence of one diverging characteristic length scale -- the so called correlation le ngth -- appear. We indeed observe power laws and scaling behavior over extraordinarily many decades of the suitable scaling variables at the paramagnetic-to-ferromagnetic phase transition in ultrathin Fe films. However, we find that, when the putative critical point is approached, the singular behavior of thermodynamic quantities transforms into an analytic one: the critical point does not exist, it is replaced by a more complex phase involving domains of opposite magnetization, below as well as $above$ the putative critical temperature. All essential experimental results are reproduced by Monte-Carlo simulations in which, alongside the familiar exchange coupling, the competing dipole-dipole interaction is taken into account. Our results imply that a scaling behavior of macroscopic thermodynamic quantities is not necessarily a signature for an underlying second-order phase transition and that the paramagnetic-to-ferromagnetic phase transition proceeds, very likely, in the presence of at least two long spatial scales: the correlation length and the size of magnetic domains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا