ترغب بنشر مسار تعليمي؟ اضغط هنا

On Wittens global anomaly for higher SU(2) representations

53   0   0.0 ( 0 )
 نشر من قبل Oliver Baer
 تاريخ النشر 2002
  مجال البحث
والبحث باللغة English
 تأليف O. Baer




اسأل ChatGPT حول البحث

The spectral flow of the overlap operator is computed numerically along a particular path in gauge field space. The path connects two gauge equivalent configurations which differ by a gauge transformation in the non-trivial class of pi_4(SU(2)). The computation is done with the SU(2) gauge field in the fundamental, the 3/2, and the 5/2 representation. The number of eigenvalue pairs that change places along this path is established for these three representations and an even-odd pattern predicted by Witten is verified.

قيم البحث

اقرأ أيضاً

42 - O. Baer 2002
The spectral flow of the overlap operator is computed numerically along a path connecting two gauge fields which differ by a topologically non-trivial gauge transformation. The calculation is performed for SU(2) in the 3/2 and 5/2 representation. An even-odd pattern for the spectral flow as predicted by Witten is verified. The results are, however, more complicated than naively expected.
55 - Teruaki Inagaki 2003
The axial anomaly arising from the fermion sector of $U(N)$ or $SU(N)$ reduced model is studied under a certain restriction of gauge field configurations (the ``$U(1)$ embedding with $N=L^d$). We use the overlap-Dirac operator and consider how the an omaly changes as a function of a gauge-group representation of the fermion. A simple argument shows that the anomaly vanishes for an irreducible representation expressed by a Young tableau whose number of boxes is a multiple of $L^2$ (such as the adjoint representation) and for a tensor-product of them. We also evaluate the anomaly for general gauge-group representations in the large $N$ limit. The large $N$ limit exhibits expected algebraic properties as the axial anomaly. Nevertheless, when the gauge group is $SU(N)$, it does not have a structure such as the trace of a product of traceless gauge-group generators which is expected from the corresponding gauge field theory.
80 - Teruaki Inagaki 2003
The topological charge in the $U(N)$ vector-like reduced model can be defined by using the overlap Dirac operator. We obtain its large $N$ limit for a fermion in a general gauge-group representation under a certain restriction of gauge field configurations which is termed $U(1)$ embedding.
The Abelian dominance for the string tension was shown for the fundamental sources in MA gauge in the lattice simulations. For higher representations, however, it is also known that the naive Abelian Wilson loop, which is defined by using the diagona l part of the gauge field, does not reproduce the correct behavior. To solve this problem, for an arbitrary representation of an arbitrary compact gauge group, we propose to redefine the Abelian Wilson loop. By using this redefined operator, we demonstrate the Abelian dominance for sources in the adjoint representation and the sextet representation of $SU(3)$ gauge group in lattice simulations.
We present analytical results to guide numerical simulations with Wilson fermions in higher representations of the colour group. The ratio of $Lambda$ parameters, the additive renormalization of the fermion mass, and the renormalization of fermion bi linears are computed in perturbation theory, including cactus resummation. We recall the chiral Lagrangian for the different patterns of symmetry breaking that can take place with fermions in higher representations, and discuss the possibility of an Aoki phase as the fermion mass is reduced at finite lattice spacing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا