ﻻ يوجد ملخص باللغة العربية
The spectral flow of the overlap operator is computed numerically along a path connecting two gauge fields which differ by a topologically non-trivial gauge transformation. The calculation is performed for SU(2) in the 3/2 and 5/2 representation. An even-odd pattern for the spectral flow as predicted by Witten is verified. The results are, however, more complicated than naively expected.
The spectral flow of the overlap operator is computed numerically along a particular path in gauge field space. The path connects two gauge equivalent configurations which differ by a gauge transformation in the non-trivial class of pi_4(SU(2)). The
The axial anomaly arising from the fermion sector of $U(N)$ or $SU(N)$ reduced model is studied under a certain restriction of gauge field configurations (the ``$U(1)$ embedding with $N=L^d$). We use the overlap-Dirac operator and consider how the an
The topological charge in the $U(N)$ vector-like reduced model can be defined by using the overlap Dirac operator. We obtain its large $N$ limit for a fermion in a general gauge-group representation under a certain restriction of gauge field configurations which is termed $U(1)$ embedding.
We present analytical results to guide numerical simulations with Wilson fermions in higher representations of the colour group. The ratio of $Lambda$ parameters, the additive renormalization of the fermion mass, and the renormalization of fermion bi
An algorithm is proposed for the simulation of pure SU(N) lattice gauge theories based on Genetic Algorithms(GAs). We apply GAs to SU(2) pure gauge theory on a 2 dimensional lattice and show the results, the action per plaquette and Wilson loops, are