ﻻ يوجد ملخص باللغة العربية
We present analytical results to guide numerical simulations with Wilson fermions in higher representations of the colour group. The ratio of $Lambda$ parameters, the additive renormalization of the fermion mass, and the renormalization of fermion bilinears are computed in perturbation theory, including cactus resummation. We recall the chiral Lagrangian for the different patterns of symmetry breaking that can take place with fermions in higher representations, and discuss the possibility of an Aoki phase as the fermion mass is reduced at finite lattice spacing.
The Chromomagnetic operator (CMO) mixes with a large number of operators under renormalization. We identify which operators can mix with the CMO, at the quantum level. Even in dimensional regularization (DR), which has the simplest mixing pattern, th
We review the long term project of the ALPHA collaboration to compute in QCD the running coupling constant and quark masses at high energy scales in terms of low energy hadronic quantities. The adapted techniques required to numerically carry out the
The spectral flow of the overlap operator is computed numerically along a path connecting two gauge fields which differ by a topologically non-trivial gauge transformation. The calculation is performed for SU(2) in the 3/2 and 5/2 representation. An
The spectral flow of the overlap operator is computed numerically along a particular path in gauge field space. The path connects two gauge equivalent configurations which differ by a gauge transformation in the non-trivial class of pi_4(SU(2)). The
The axial anomaly arising from the fermion sector of $U(N)$ or $SU(N)$ reduced model is studied under a certain restriction of gauge field configurations (the ``$U(1)$ embedding with $N=L^d$). We use the overlap-Dirac operator and consider how the an