In this contribution we present an exploratory study of several novel methods for numerical stochastic perturbation theory. For the investigation we consider observables defined through the gradient flow in the simple {phi}^4 theory.
Numerical stochastic perturbation theory is a powerful tool for estimating high-order perturbative expansions in lattice field theory. The standard algorithms based on the Langevin equation, however, suffer from several limitations which in practice
restrict the potential of this technique. In this work we investigate some alternative methods which could in principle improve on the standard approach. In particular, we present a study of the recently proposed Instantaneous Stochastic Perturbation Theory, as well as a formulation of numerical stochastic perturbation theory based on Generalized Hybrid Molecular Dynamics algorithms. The viability of these methods is investigated in $varphi^4$ theory.
We calculate Wilson loops of various sizes up to 20 loops in SU(3) pure lattice gauge theory at different lattice sizes for Wilson gauge action using the technique of numerical stochastic perturbation theory. This allows us to investigate the perturb
ative series for various Wilson loops at high loop orders. We observe differences in the behavior of those series as function of the loop order. Up to $n=20$ we do not find evidence for the factorial growth of the expansion coefficients often assumed to characterize an asymptotic series. Based on the actually observed behavior we sum the series in a model parametrized by hypergeometric functions. Alternatively we estimate the total series in boosted perturbation theory using information from the first 14 loops. We introduce generalized ratios of Wilson loops of different sizes. Together with the corresponding Wilson loops from standard Monte Carlo measurements they enable us to assess their non-perturbative parts.
We summarize the higher-loop perturbative computation of the ghost and gluon propagators in SU(3) Lattice Gauge Theory. Our final aim is to compare with results from lattice simulations in order to expose the genuinely non-perturbative content of the
latter. By means of Numerical Stochastic Perturbation Theory we compute the ghost and gluon propagators in Landau gauge up to three and four loops. We present results in the infinite volume and $a to 0$ limits, based on a general fitting strategy.
We present the results of an exploratory study of the numerical stochastic perturbation theory (NSPT) applied to the four dimensional twisted Eguchi-Kawai (TEK) model. We employ a Kramers type algorithm based on the Generalized Hybrid Molecular Dynam
ics (GHMD) algorithm. We have computed the perturbative expansion of square Wilson loops up to $O(g^8)$. The results of the first two coefficients (up to $O(g^4)$) have a high precision and match well with the exact values. The next two coefficients can be determined and even extrapolated to large $N$, where they should coincide with the corresponding coefficients for ordinary Yang-Mills theory on an infinite lattice. Our analysis shows the behaviour of the probability distribution for each coefficient tending to Gaussian for larger $N$. The results allow us to establish the requirements to extend this analysis to much higher order.
We present higher loop results for the gluon and ghost propagator in Landau gauge on the lattice calculated in numerical stochastic perturbation theory. We make predictions for the perturbative content of those propagators as function of the lattice
momenta for finite lattices. To find out their nonperturbative contributions, the logarithmic definition of the gauge fields and the corresponding Faddeev-Popov operator have to be implemented in the Monte Carlo simulations.