ﻻ يوجد ملخص باللغة العربية
We present an exact dynamical QCD simulation algorithm for the $O(a)$-improved Wilson fermion with odd number of flavors. Our algorithm is an extension of the non-Hermitian polynomials HMC algorithm proposed by Takaishi and de Forcrand previously. In our algorithm, the systematic errors caused by the polynomial approximation of the inverse of Dirac operator is removed by a noisy-Metropolis test. For one flavor quark it is achieved by taking the square root of the correction matrix explicitly. We test our algorithm for the case of $N_f=1+1$ on a moderately large lattice size ($16^3times48$). The $N_f=2+1$ case is also investigated.
We report on a calculation of the light hadron spectrum and quark masses in three-flavor dynamical QCD using the non-perturbatively O(a)-improved Wilson quark action and a renormalization-group improved gauge action. Simulations are carried out on a
We present simulation details and results for the light hadron spectrum in N f = 2 + 1 lattice QCD with the nonperturbatively O(a)-improved Wilson quark action and the Iwasaki gauge action. Simulations are carried out at a lattice spacing of 0.09 fm
We construct positive-definite pseudofermion actions for one fermion flavor in lattice field theory, for Wilson and domain-wall fermions respectively. The positive definiteness of these actions ensures that they can be simulated with the Hybrid Monte
We study the finite temperature phase structure for three-flavor QCD with a focus on locating the critical point which separates crossover and first order phase transition region in the chiral regime of the Columbia plot. In this study, we employ the
We compute the Landau gauge quark propagator from lattice QCD with two flavors of dynamical O(a)-improved Wilson fermions. The calculation is carried out with lattice spacings ranging from 0.06 fm to 0.08 fm, with quark masses corresponding to pion m