ترغب بنشر مسار تعليمي؟ اضغط هنا

Quark propagator with two flavors of O(a)-improved Wilson fermions

256   0   0.0 ( 0 )
 نشر من قبل Andre Sternbeck
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the Landau gauge quark propagator from lattice QCD with two flavors of dynamical O(a)-improved Wilson fermions. The calculation is carried out with lattice spacings ranging from 0.06 fm to 0.08 fm, with quark masses corresponding to pion masses of 420, 290 and 150 MeV, and for volumes of up to (4.5fm)^4. Our ensembles allow us to evaluate lattice spacing, volume and quark mass effects. We find that the quark wave function which is suppressed in the infrared, is further suppressed as the quark mass is reduced, but the suppression is weakened as the volume is increased. The quark mass function M(p^2) shows only a weak volume dependence. Hypercubic artefacts beyond O(a) are reduced by applying both cylinder cuts and H4 extrapolations. The H4 extrapolation shifts the quark wave function systematically upwards but does not perform well for the mass function.



قيم البحث

اقرأ أيضاً

We explore sea quark effects in the light hadron mass spectrum in a simulation of two-flavor QCD using the nonperturbatively O(a)-improved Wilson fermion action. In order to identify finite-size effects, light meson masses are measured on 12^3x48, 16 ^3x48 and 20^3x48 lattices with a~0.1 fm. On the largest lattice, where the finite-size effect is negligible, we find a significant increase of the strange vector meson mass compared to the quenched approximation. We also investigate the quark mass dependence of pseudoscalar meson masses and decay constants and test the consistency with (partially quenched) chiral perturbation theory.
We describe a new set of gauge configurations generated within the CLS effort. These ensembles have N_f=2+1 flavors of non-perturbatively improved Wilson fermions in the sea with the Luescher-Weisz action used for the gluons. Open boundary conditions in time are used to address the problem of topological freezing at small lattice spacings and twisted-mass reweighting for improved stability of the simulations. We give the bare parameters at which the ensembles have been generated and how these parameters have been chosen. Details of the algorithmic setup and its performance are presented as well as measurements of the pion and kaon masses alongside the scale parameter t_0.
We present the corrections to the fermion propagator, to second order in the lattice spacing, O(a^2), in 1-loop perturbation theory. The fermions are described by the clover action and for the gluons we use a 3-parameter family of Symanzik improved a ctions. Our calculation has been carried out in a general covariant gauge. The results are provided as a polynomial of the clover parameter, and are tabulated for 10 popular sets of the Symanzik coefficients (Plaquette, Tree-level Symanzik, Iwasaki, TILW and DBW2 action). We also study the O(a^2) corrections to matrix elements of fermion bilinear operators that have the form $barPsiGammaPsi$, where $Gamma$ denotes all possible distinct products of Dirac matrices. These correction terms are essential ingredients for improving, to O(a^2), the matrix elements of the fermion operators. Our results are applicable also to the case of twisted mass fermions. A longer write-up of this work, including non-perturbative results, is in preparation together with V. Gimenez, V. Lubicz and D. Palao.
We present a high statistics study of the light hadron spectrum and quark masses in QCD with two flavors of dynamical quarks. Numerical simulations are carried out using the plaquette gauge action and the O(a)-improved Wilson quark action at beta=5.2 , where the lattice spacing is found to be a=0.0887(11)fm from rho meson mass, on a 20^3times 48 lattice. At each of five sea quark masses corresponding to m_{PS}/m_{V} simeq 0.8-0.6, we generate 12000 trajectories using the symmetrically preconditioned Hybrid Monte Carlo algorithm. Finite spatial volume effects are investigated employing 12^3 times 48, 16^3 times 48 lattices. We also perform a set of simulations in quenched QCD with the same lattice actions at a similar lattice spacing to those for the full QCD runs. In the meson sector we find clear evidence of sea quark effects. The J parameter increases for lighter sea quark masses, and the full QCD meson masses are systematically closer to experiment than in quenched QCD. Careful finite-size studies are made to ascertain that these are not due to finite-size effects. Evidence of sea quark effects is less clear in the baryon sector due to larger finite-size effects. We also calculate light quark masses and find m_{ud}^{MS}(2GeV) =3.223(+0.046/-0.069)MeV and m_s^{MS}(2GeV)=84.5(+12.0/-1.7)MeV which are about 20% smaller than in quenched QCD.
We report on our study of light hadron spectrum and quark masses in QCD with two flavors of dynamical quarks. Simulations are made with the plaquette gauge action and the non-perturbatively $O(a)$ improved Wilson quark action. We simulate 5 sea qaurk masses corresponding to $m_{PS}/m_{V} simeq 0.8$--0.6 at $beta=5.2$ on $12^3 times 48$, $16^3 times 48$ and $20^3 times 48$ lattices. A comparison with previous calculations in quenched QCD indicates sea quark effects in meson and quark masses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا