ﻻ يوجد ملخص باللغة العربية
We construct positive-definite pseudofermion actions for one fermion flavor in lattice field theory, for Wilson and domain-wall fermions respectively. The positive definiteness of these actions ensures that they can be simulated with the Hybrid Monte Carlo (HMC) method. For lattice QCD with optimal domain-wall quarks, we compare the efficiency of HMC simulations of 2-flavor and (1+1)-flavor, and find that the efficiency ratio is about 3:2.
Lattice QCD calculations including the effects of one or more non-degenerate sea quark flavors are conventionally performed using the Rational Hybrid Monte Carlo (RHMC) algorithm, which computes the square root of the determinant of $mathscr{D}^{dagg
We present an exact dynamical QCD simulation algorithm for the $O(a)$-improved Wilson fermion with odd number of flavors. Our algorithm is an extension of the non-Hermitian polynomials HMC algorithm proposed by Takaishi and de Forcrand previously. In
We report our numerical lattice QCD calculations of the isovector nucleon form factors for the vector and axialvector currents: the vector, induced tensor, axialvector, and induced pseudoscalar form factors. The calculation is carried out with the ga
We report lattice-volume independence of low moments of nucleon structure functions from the coarse RIKEN-BNL-Columbia (RBC) and UKQCD joint dynamical (2+1)-flavor domain-wall fermions (DWF) ensembles at the lattice cut off of (a^{-1}sim1.7) GeV. The
We report on the nucleon decay matrix elements with domain-wall fermions in quenched approximation. Results from direct and indirect method are compared with a focus on the process of a proton decaying to a pion and a lepton. We discuss the renormali