ﻻ يوجد ملخص باللغة العربية
A resonance method of measuring the electric dipole moment (EDM) of nuclei in storage rings is described, based on two new ideas: (1) Oscillating particles velocities in resonance with spin precession, and (2) alternately producing two sub-beams with different betatron tunes--one sub-beam to amplify and thus make it easier to correct ring imperfections that produce false signals imitating EDM signals, and the other to make the EDM measurement.
The connection between a regularization-independent symmetric momentum substraction (RI-$tilde{rm S}$MOM) and the $overline{rm MS}$ scheme for the quark chromo EDM operators is discussed. A method for evaluating the neutron EDM from quark chromoEDM i
We evaluate the contribution of the CP violating gluon chromo-electric dipole moment (the so-called Weinberg operator, denoted as $w$) to the electric dipole moment (EDM) of nucleons in the nonrelativistic quark model. The CP-odd interquark potential
A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity of $10^{-29}ecdot$cm by using polarized magic momentum $0.7$~GeV/c protons in an all-electric storage ring. Systematic errors relevant to the
A Cs fountain electron electric dipole moment (EDM) experiment using electric-field quantization is demonstrated. With magnetic fields reduced to 200 pT or less, the electric field lifts the degeneracy between hyperfine levels of different|mF| and, a
Permanent electric dipole moments (EDMs) of fundamental particles provide powerful probes for physics beyond the Standard Model. We propose to search for the EDM of strange and charm baryons at LHC, extending the ongoing experimental program on the n