ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonance method of electric-dipole-moment measurements in storage rings

138   0   0.0 ( 0 )
 نشر من قبل Yannis K. Semertzidis
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English
 تأليف Yuri F. Orlov




اسأل ChatGPT حول البحث

A resonance method of measuring the electric dipole moment (EDM) of nuclei in storage rings is described, based on two new ideas: (1) Oscillating particles velocities in resonance with spin precession, and (2) alternately producing two sub-beams with different betatron tunes--one sub-beam to amplify and thus make it easier to correct ring imperfections that produce false signals imitating EDM signals, and the other to make the EDM measurement.

قيم البحث

اقرأ أيضاً

The connection between a regularization-independent symmetric momentum substraction (RI-$tilde{rm S}$MOM) and the $overline{rm MS}$ scheme for the quark chromo EDM operators is discussed. A method for evaluating the neutron EDM from quark chromoEDM i s described. A preliminary study of the signal in the matrix element using clover quarks on a highly improved staggered quark (HISQ) ensemble is shown.
We evaluate the contribution of the CP violating gluon chromo-electric dipole moment (the so-called Weinberg operator, denoted as $w$) to the electric dipole moment (EDM) of nucleons in the nonrelativistic quark model. The CP-odd interquark potential is modeled by the perturbative one-loop level gluon exchange generated by the Weinberg operator with massive quarks and gluons. The nucleon EDM is obtained by solving the nonrelativistic Schr{o}dinger equation of the three-quark system using the Gaussian expansion method. It is found that the resulting nucleon EDM, which may reasonably be considered as the irreducible contribution, is smaller than the one obtained after $gamma_5$-rotating the anomalous magnetic moment using the CP-odd mass calculated with QCD sum rules. We estimate the total contribution to be $d_n = w times 20 , e , {rm MeV}$ and $d_p = - w times 18 , e , {rm MeV}$ with 60% of theoretical uncertainty.
A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity of $10^{-29}ecdot$cm by using polarized magic momentum $0.7$~GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the Standard Model at the scale of 3000~TeV.
A Cs fountain electron electric dipole moment (EDM) experiment using electric-field quantization is demonstrated. With magnetic fields reduced to 200 pT or less, the electric field lifts the degeneracy between hyperfine levels of different|mF| and, a long with the slow beam and fountain geometry, suppresses systematics from motional magnetic fields. Transitions are induced and the atoms polarized and analyzed in field-free regions. The feasibility of reaching a sensitivity to an electron EDM of 2 x 10 exp(-50) C-m [1.3 x 10 exp(-29) e-cm] in a cesium fountain experiment is discussed.
Permanent electric dipole moments (EDMs) of fundamental particles provide powerful probes for physics beyond the Standard Model. We propose to search for the EDM of strange and charm baryons at LHC, extending the ongoing experimental program on the n eutron, muon, atoms, molecules and light nuclei. The EDM of strange Lambda baryons, selected from weak decays of charm baryons produced in pp collisions at LHC, can be determined by studying the spin precession in the magnetic field of the detector tracking system. A test of CPT symmetry can be performed by measuring the magnetic dipole moment of Lambda and anti-Lambda baryons. For short-lived Lambdac+ and Xic+ baryons, to be produced in a fixed-target experiment using the 7 TeV LHC beam and channeled in a bent crystal, the spin precession is induced by the intense electromagnetic field between crystal atomic planes. The experimental layout based on the LHCb detector and the expected sensitivities in the coming years are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا