ترغب بنشر مسار تعليمي؟ اضغط هنا

On the search for the electric dipole moment of strange and charm baryons at LHC

72   0   0.0 ( 0 )
 نشر من قبل Fernando Martinez-Vidal
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Permanent electric dipole moments (EDMs) of fundamental particles provide powerful probes for physics beyond the Standard Model. We propose to search for the EDM of strange and charm baryons at LHC, extending the ongoing experimental program on the neutron, muon, atoms, molecules and light nuclei. The EDM of strange Lambda baryons, selected from weak decays of charm baryons produced in pp collisions at LHC, can be determined by studying the spin precession in the magnetic field of the detector tracking system. A test of CPT symmetry can be performed by measuring the magnetic dipole moment of Lambda and anti-Lambda baryons. For short-lived Lambdac+ and Xic+ baryons, to be produced in a fixed-target experiment using the 7 TeV LHC beam and channeled in a bent crystal, the spin precession is induced by the intense electromagnetic field between crystal atomic planes. The experimental layout based on the LHCb detector and the expected sensitivities in the coming years are discussed.



قيم البحث

اقرأ أيضاً

The milliQan Collaboration has proposed to search for millicharged particles by looking for very weakly ionizing tracks in a detector installed in a cavern near the CMS experiment at the LHC. We note that another form of exotica can also yield weakly ionizing tracks. If a heavy neutrino has an electric dipole moment (EDM), then the milliQan experiment may be sensitive to it as well. In particular, writing the general dimension-5 operator for an EDM with a scale of a TeV and a one-loop factor, one finds a potential EDM as high as a few times $10^{-17}$ e-cm, and models exist where it is an order of magnitude higher. Redoing the Bethe calculation of ionization energy loss for an EDM, it is found that the milliQan detector is sensitive to EDMs as small as $10^{-17}$ e-cm. Using the production cross-section and analyzing the acceptance of the milliQan detector, we find the expected $95%$ exclusion and $3sigma$ sensitivity over the range of neutrino masses from $5-1000$ GeV for integrated luminosities of $300$ and $3000 {rm fb}^{-1}$ at the LHC.
The outstanding progress has been made in reducing the upper bounds on EDM of several particles. Even if significant challenges must be overcome to further improve these limits, it is still one of the best chances to detect new type of interactions b eyond the standard model. Analyzing several examples, we highlight a common thread that is visible in different set-ups used for the EDM detection. The electric dipole moment is one of the clear consequences of CP- or T-violating interactions, however it is not the only one. These symmetry-violating interactions enable extra phenomena that unavoidably accompany the EDM-induced spin precession, and they must be taken into account in planning and executing sensitive experiments. After reviewing three typical cases, we suggest conditions for improving the sensitivity of detecting the intrinsic EDM.
152 - K. Inami , K. Hayasaka , I. Adachi 2021
We report a measurement of the electric dipole moment of the $tau$ lepton ($d_tau$) using an 833 fb$^{-1}$ data sample collected near the $Upsilon(4S)$ resonance, with the Belle detector at the KEKB asymmetric-energy $e^+ e^-$ collider. Using an opti mal observable method, we obtain the real and imaginary parts of $d_tau$ as ${rm Re}(d_tau) = ( -0.62 pm 0.63 ) times 10^{-17} ~e{rm cm}$ and ${rm Im}(d_tau) = ( -0.40 pm 0.32 ) times 10^{-17} ~e{rm cm}$, respectively. These results are consistent with no electric dipole moment at the present level of experimental sensitivity and improve the sensitivity by about a factor of three.
148 - M. Burghoff , A. Schnabel , G. Ban 2011
A permanent electric dipole moment of fundamental spin-1/2 particles violates both parity (P) and time re- versal (T) symmetry, and hence, also charge-parity (CP) symmetry since there is no sign of CPT-violation. The search for a neutron electric dip ole moment (nEDM) probes CP violation within and beyond the Stan- dard Model. The experiment, set up at the Paul Scherrer Institute (PSI), an improved, upgraded version of the apparatus which provided the current best experimental limit, dn < 2.9E-26 ecm (90% C.L.), by the RAL/Sussex/ILL collaboration: Baker et al., Phys. Rev. Lett. 97, 131801 (2006). In the next two years we aim to improve the sensitivity of the apparatus to sigma(dn) = 2.6E-27 ecm corresponding to an upper limit of dn < 5E-27 ecm (95% C.L.), in case for a null result. In parallel the collaboration works on the design of a new apparatus to further increase the sensitivity to sigma(dn) = 2.6E-28 ecm.
188 - Y. Kato , T. Iijima , I. Adachi 2013
We report results of a study of doubly charmed baryons and charmed strange baryons. The analysis is performed using a 980 fb^-1 data sample collected with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. We search for doubly charmed baryons Xi_cc^+(+) with the Lambda_c^+K^-pi^+(pi^+) and Xi_c^0pi^+(pi^+) final states. No significant signal is observed. We also search for two excited charmed strange baryons, Xi_c(3055)^+ and Xi_c(3123)^+ with the Sigma_c^++(2455)K^- and Sigma_c^++(2520)K^- final states. The Xi_c(3055)^+ signal is observed with a significance of 6.6 standard deviations including systematic uncertainty, while no signature of the Xi_c(3123)^+ is seen. We also study properties of the Xi_c(2645)^+ and measure a width of 2.6 +- 0.2 (stat) +- 0.4 (syst) MeV/c^2, which is the first significant determination.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا