ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurements of the Dalitz Plot Parameters for $K^{pm}topi^{pm}pi^0pi^0$ Decays

71   0   0.0 ( 0 )
 نشر من قبل Alexander Kozelov
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The $g$, $h$, and $k$ Dalitz plot parameters, which are coefficients in a series expansion of the squared module of the matrix element $|M(u,v)|^{2} propto 1 + gu + hu^{2} + kv^{2}$ ($u$, $v$ are invariant variables), have been measured for $K^{pm}to pi^{pm} pi^{0} pi^{0}$ decays using $35 GeV/c$ hadron beams at the IHEP (Protvino) accelerator. Dependences of parameters and fit quality on the $pi^0pi^0$ mass cut were investigated. The results point to the important role of $pi^+pi^- to pi^0pi^0$ charge exchange scattering near the $pi^0pi^0$ mass threshold. The comparison of our data with previous measurements is presented.

قيم البحث

اقرأ أيضاً

We present the first model-independent measurement of the CKM unitarity triangle angle $phi_3$ using $B^{pm}to D(K_{rm S}^0pi^+pi^-pi^0)K^{pm}$ decays, where $D$ indicates either a $D^{0}$ or $overline{D}^{0}$ meson. Measurements of the strong-phase difference of the $D to K_{rm S}^0pi^+pi^-pi^0$ amplitude obtained from CLEO-c data are used as input. This analysis is based on the full Belle data set of $772times 10^{6}$ $Boverline{B}$ events collected at the $Upsilon(4S)$ resonance. We obtain $phi_3 = (5.7~^{+10.2}_{-8.8} pm 3.5 pm 5.7)^{circ}$ and the suppressed amplitude ratio $r_{B} = 0.323 pm 0.147 pm 0.023 pm 0.051$. Here the first uncertainty is statistical, the second is the experimental systematic, and the third is due to the precision of the strong-phase parameters measured from CLEO-c data. The 95% confidence interval on $phi_3$ is $(-29.7,~109.5)^{circ}$, which is consistent with the current world average.
Amplitude models are constructed to describe the resonance structure of ${D^{0}to K^{-}pi^{+}pi^{+}pi^{-}}$ and ${D^{0} to K^{+}pi^{-}pi^{-}pi^{+}}$ decays using $pp$ collision data collected at centre-of-mass energies of 7 and 8 TeV with the LHCb ex periment, corresponding to an integrated luminosity of $3.0mathrm{fb}^{-1}$. The largest contributions to both decay amplitudes are found to come from axial resonances, with decay modes $D^{0} to a_1(1260)^{+} K^{-}$ and $D^{0} to K_1(1270/1400)^{+} pi^{-}$ being prominent in ${D^{0}to K^{-}pi^{+}pi^{+}pi^{-}}$ and $D^{0}to K^{+}pi^{-}pi^{-}pi^{+}$, respectively. Precise measurements of the lineshape parameters and couplings of the $a_1(1260)^{+}$, $K_1(1270)^{-}$ and $K(1460)^{-}$ resonances are made, and a quasi model-independent study of the $K(1460)^{-}$ resonance is performed. The coherence factor of the decays is calculated from the amplitude models to be $R_{K3pi} = 0.459pm 0.010,(mathrm{stat}) pm 0.012,(mathrm{syst}) pm 0.020,(mathrm{model})$, which is consistent with direct measurements. These models will be useful in future measurements of the unitary-triangle angle $gamma$ and studies of charm mixing and $C!P$ violation.
The resonant substructure of $B_s^0 rightarrow bar{D}^0 K^- pi^+$ decays is studied with the Dalitz plot analysis technique. The study is based on a data sample corresponding to an integrated luminosity of $3.0,{rm fb}^{-1}$ of $pp$ collision data re corded by LHCb. A structure at $m(bar{D}^0 K^-) approx 2.86 {rm GeV}/c^2$ is found to be an admixture of spin-1 and spin-3 resonances. The masses and widths of these states and of the $D^*_{s2}(2573)^-$ meson are measured, as are the complex amplitudes and fit fractions for all the $bar{D}^0 K^-$ and $K^-pi^+$ components included in the amplitude model. In addition, the $D^*_{s2}(2573)^-$ resonance is confirmed to be spin-2.
The first amplitude analysis of the $B^pm to pi^pm K^+ K^-$ decay is reported based on a data sample corresponding to an integrated luminosity of 3.0 fb$^{-1}$ of $pp$ collisions recorded in 2011 and 2012 with the LHCb detector. The data is found to be best described by a coherent sum of five resonant structures plus a nonresonant component and a contribution from $pipi leftrightarrow KK$ $S$-wave rescattering. The dominant contributions in the $pi^pm K^mp$ and $K^{+}K^{-}$ systems are the nonresonant and the $B^pm to rho(1450)^{0}pi^{pm}$ amplitudes, respectively, with fit fractions around $30%$. For the rescattering contribution, a sizeable fit fraction is observed. This component has the largest $CP$ asymmetry reported to date for a single amplitude of $(-66 pm 4 pm 2)%$, where the first uncertainty is statistical and the second systematic. No significant $CP$ violation is observed in the other contributions.
We report a search for charmless hadronic decays of charged $B$ mesons to the final states $K^{0}_{S} K^{0}_{S} K^{pm}$ and $K^{0}_{S} K^{0}_{S} pi^{pm}$ . The results are based on a $711 {fb}^{-1}$ data sample that contains $772 times 10^6$ $B bar{B }$ pairs, and was collected at the $Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy $e^{+}e^{-}$ collider. For $B^{pm} to K^{0}_{S} K^{0}_{S} K^{pm}$ decays, the measured branching fraction and direct $CP$ asymmetry are $[10.64pm0.49(stat)pm 0.44(syst)]times10^{-6}$ and [$-0.6pm3.9(stat)pm 3.4(syst)$] %, respectively. In the absence of a statistically significant signal for $B^{pm}to K^{0}_{S} K^{0}_{S} pi^{pm}$, we set the 90 % confidence-level upper limit on its branching fraction at $1.14 times 10^{-6}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا