ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for Quark-Hadron Duality in the Proton Spin Asymmetry $A_1$

103   0   0.0 ( 0 )
 نشر من قبل Nicola Bianchi
 تاريخ النشر 2002
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin-dependent lepton-nucleon scattering data have been used to investigate the validity of the concept of quark-hadron duality for the spin asymmetry $A_1$. Longitudinally polarised positrons were scattered off a longitudinally polarised hydrogen target for values of $Q^2$ between 1.2 and 12 GeV$^2$ and values of $W^2$ between 1 and 4 GeV$^2$. The average double-spin asymmetry in the nucleon resonance region is found to agree with that measured in deep-inelastic scattering at the same values of the Bjorken scaling variable $x$. This finding implies that the description of $A_1$ in terms of quark degrees of freedom is valid also in the nucleon resonance region for values of $Q^2$ above 1.6 GeV$^2$.

قيم البحث

اقرأ أيضاً

We present experimental results of the first high-precision test of quark-hadron duality in the spin-structure function g_1 of the neutron and $^3$He using a polarized 3He target in the four-momentum-transfer-squared range from 0.7 to 4.0 (GeV/c)^2. Global duality is observed for the spin-structure function g_1 down to at least Q^2 = 1.8 (GeV/c)^2 in both targets. We have also formed the photon-nucleon asymmetry A_1 in the resonance region for 3He and found no strong Q^2-dependence above 2.2 (GeV/c)^2.
282 - X. Zheng , et al. 2003
We have measured the neutron spin asymmetry $A_1^n$ with high precision at three kinematics in the deep inelastic region at $x=0.33$, 0.47 and 0.60, and $Q^2=2.7$, 3.5 and 4.8 (GeV/c)$^2$, respectively. Our results unambiguously show, for the first t ime, that $A_1^n$ crosses zero around $x=0.47$ and becomes significantly positive at $x=0.60$. Combined with the world proton data, polarized quark distributions were extracted. Our results, in general, agree with relativistic constituent quark models and with perturbative quantum chromodynamics (pQCD) analyses based on the earlier data. However they deviate from pQCD predictions based on hadron helicity conservation.
New measurements of the spin structure functions of the proton and deuteron g1p(x,Q2) and g1d(x,Q2) in the nucleon resonance region are compared with extrapolations of target-mass-corrected next-to-leading-order (NLO) QCD fits to higher energy data. Averaged over the entire resonance region (W<2 GeV), the data and QCD fits are in good agreement in both magnitude and Q2 dependence for Q2>1.7 GeV2. This global duality appears to result from cancellations among the prominent local resonance regions: in particular strong sigma{3/2} contributions in the Delta(1232) region appear to be compensated by strong sigma{1/2} contributions in the resonance region centered on 1.5 GeV. These results are encouraging for the extension of NLO QCD fits to lower W and Q2 than have been used previously.
Using data from the recent BONuS experiment at Jefferson Lab, which utilized a novel spectator tagging technique to extract the inclusive electron-free neutron scattering cross section, we obtain the first direct observation of quark-hadron duality i n the neutron F_2 structure function. The data are used to reconstruct the lowest few (N=2, 4 and 6) moments of F_2 in the three prominent nucleon resonance regions, as well as the moments integrated over the entire resonance region. Comparison with moments computed from global parametrizations of parton distribution functions suggest that quark--hadron duality holds locally for the neutron in the second and third resonance regions down to Q^2 ~ 1 GeV^2, with violations possibly up to 20% observed in the first resonance region.
Hadronic spectral functions measured by the ALEPH collaboration in the vector and axial-vector channels are used to study potential quark-hadron duality violations (DV). This is done entirely in the framework of pinched kernel finite energy sum rules (FESR), i.e. in a model independent fashion. The kinematical range of the ALEPH data is effectively extended up to $s = 10; {mbox{GeV}^2}$ by using an appropriate kernel, and assuming that in this region the spectral functions are given by perturbative QCD. Support for this assumption is obtained by using $e^+ e^-$ annihilation data in the vector channel. Results in both channels show a good saturation of the pinched FESR, without further need of explicit models of DV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا