ﻻ يوجد ملخص باللغة العربية
New measurements of the spin structure functions of the proton and deuteron g1p(x,Q2) and g1d(x,Q2) in the nucleon resonance region are compared with extrapolations of target-mass-corrected next-to-leading-order (NLO) QCD fits to higher energy data. Averaged over the entire resonance region (W<2 GeV), the data and QCD fits are in good agreement in both magnitude and Q2 dependence for Q2>1.7 GeV2. This global duality appears to result from cancellations among the prominent local resonance regions: in particular strong sigma{3/2} contributions in the Delta(1232) region appear to be compensated by strong sigma{1/2} contributions in the resonance region centered on 1.5 GeV. These results are encouraging for the extension of NLO QCD fits to lower W and Q2 than have been used previously.
We present experimental results of the first high-precision test of quark-hadron duality in the spin-structure function g_1 of the neutron and $^3$He using a polarized 3He target in the four-momentum-transfer-squared range from 0.7 to 4.0 (GeV/c)^2.
Hadronic spectral functions measured by the ALEPH collaboration in the vector and axial-vector channels are used to study potential quark-hadron duality violations (DV). This is done entirely in the framework of pinched kernel finite energy sum rules
The vector and axial-vector ALEPH hadronic spectral functions from $tau$-decay are used to probe potential quark-hadron duality violations (DV). This is done in the framework of finite energy QCD sum rules (FESR). A pinched integration kernel is intr
An exhaustive number of QCD finite energy sum rules for $tau$-decay together with the latest updated ALEPH data is used to test the assumption of global duality. Typical checks are the absence of the dimension $d=2$ condensate, the equality of the gl
Inclusive electron-proton and electron-deuteron inelastic cross sections have been measured at Jefferson Lab (JLab) in the resonance region, at large Bjorken x, up to 0.92, and four-momentum transfer squared Q2 up to 7.5 GeV2 in the experiment E00-11