ﻻ يوجد ملخص باللغة العربية
We have measured the neutron spin asymmetry $A_1^n$ with high precision at three kinematics in the deep inelastic region at $x=0.33$, 0.47 and 0.60, and $Q^2=2.7$, 3.5 and 4.8 (GeV/c)$^2$, respectively. Our results unambiguously show, for the first time, that $A_1^n$ crosses zero around $x=0.47$ and becomes significantly positive at $x=0.60$. Combined with the world proton data, polarized quark distributions were extracted. Our results, in general, agree with relativistic constituent quark models and with perturbative quantum chromodynamics (pQCD) analyses based on the earlier data. However they deviate from pQCD predictions based on hadron helicity conservation.
We report on measurements of the neutron spin asymmetries $A_{1,2}^n$ and polarized structure functions $g_{1,2}^n$ at three kinematics in the deep inelastic region, with $x=0.33$, 0.47 and 0.60 and $Q^2=2.7$, 3.5 and 4.8 (GeV/c)$^2$, respectively. T
Spin-dependent lepton-nucleon scattering data have been used to investigate the validity of the concept of quark-hadron duality for the spin asymmetry $A_1$. Longitudinally polarised positrons were scattered off a longitudinally polarised hydrogen ta
The generalized forward spin polarizabilities $gamma_0$ and $delta_{LT}$ of the neutron have been extracted for the first time in a $Q^2$ range from 0.1 to 0.9 GeV$^2$. Since $gamma_0$ is sensitive to nucleon resonances and $delta_{LT}$ is insensitiv
Using TRIUMFs neutral atom trap, TRINAT, for nuclear $beta$ decay, we have measured the $beta$ asymmetry with respect to the initial nuclear spin in $^{37}mathrm{K}$ to be $A_beta=-0.5707(13)_mathrm{syst}(13)_mathrm{stat}(5)_mathrm{pol}$, a 0.3% meas
We have performed precision measurements of the double-spin virtual-photon asymmetry $A_1$ on the neutron in the deep inelastic scattering regime, using an open-geometry, large-acceptance spectrometer. Our data cover a wide kinematic range $0.277 leq