ترغب بنشر مسار تعليمي؟ اضغط هنا

Solutions to a Quantal Gravity-Matter Field Theory on a Line

41   0   0.0 ( 0 )
 نشر من قبل Roman Jackiw
 تاريخ النشر 1996
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Roman Jackiw




اسأل ChatGPT حول البحث

Solutions to a scalar-tensor (dilaton) quantum gravity theory, interacting with quantized matter, are described. Dirac quantization is frustrated by quantal anomalies in the constraint algebra. Progress is made only after the Wheeler--DeWitt equation is modified by quantal terms, which eliminate the anomaly. More than one modification is possible, resulting in more than one `physical spectrum in the quantum theory, corresponding to the given classical model.

قيم البحث

اقرأ أيضاً

In a recent work, we present a new point of view to the relation of gravity and thermodynamics, in which we derive the sch~solution through thermodynamic laws by the aid of the Misner-Sharp mass in an adiabatic system. In this paper we continue to in vestigate the relation between gravity and thermodynamics for obtaining solutions via thermodynamics. We generalize our studies on gravi-thermodynamics in Einstein gravity to modified gravity theories. By using the first law with the assumption that the Misner-Sharp mass is the mass for an adiabatic system, we reproduce the Boulware-Deser-Cai solution in Guass-Bonnet gravity. Using this gravi-thermodynamics thought, we obtain a NEW class of solution in $F(R)$ gravity in an $n$-dimensional (n$geq$3) spacetime which permits three-type $(n-2)$-dimensional maximally symmetric subspace, as an extension of our recent three-dimensional black hole solution, and four-dimensional Clifton-Barrow solution in $F(R)$ gravity.
We comment on the recently introduced Gauss-Bonnet gravity in four dimensions. We argue that it does not make sense to consider this theory to be defined by a set of $Dto 4$ solutions of the higher-dimensional Gauss-Bonnet gravity. We show that a wel l-defined $Dto 4$ limit of Gauss-Bonnet Gravity is obtained generalizing a method employed by Mann and Ross to obtain a limit of the Einstein gravity in $D=2$ dimensions. This is a scalar-tensor theory of the Horndeski type obtained by a dimensional reduction methods. By considering simple spacetimes beyond spherical symmetry (Taub-NUT spaces) we show that the naive limit of the higher-dimensional theory to four dimensions is not well defined and contrast the resultant metrics with the actual solutions of the new theory.
This article presents an extended model of gravity obtained by gauging the AdS-Mawell algebra. It involves additional fields that shift the spin connection, leading effectively to theory of two independent connections. Extension of algebraic structur e by another tetrad gives rise to the model described by a pair of Einstein equations.
Following recent works on corner charges we investigate the boundary structure in the case of the theory of gravity formulated as a constrained BF theory. This allows us not only to introduce the cosmological constant, but also explore the influence of the topological terms present in the action of this theory. Established formulas for charges resemble previously obtained ones, but we show that they are affected by the presence of the cosmological constant and topological terms. As an example we discuss the charges in the case of the AdS--Schwarzschild solution and we find that the charges give correct values.
In this paper we analyze the gravitational field of a global monopole in the context of $f(R)$ gravity. More precisely, we show that the field equations obtained are expressed in terms of $F(R)=frac{df(R)}{dR}$. Since we are dealing with a sphericall y symmetric system, we assume that $F(R)$ is a function of the radial coordinate only. Moreover, adopting the weak field approximation, we can provide all components of the metric tensor. A comparison with the corresponding results obtained in General Relativity and in the Brans-Dicke theory is also made.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا