ﻻ يوجد ملخص باللغة العربية
In a recent work, we present a new point of view to the relation of gravity and thermodynamics, in which we derive the sch~solution through thermodynamic laws by the aid of the Misner-Sharp mass in an adiabatic system. In this paper we continue to investigate the relation between gravity and thermodynamics for obtaining solutions via thermodynamics. We generalize our studies on gravi-thermodynamics in Einstein gravity to modified gravity theories. By using the first law with the assumption that the Misner-Sharp mass is the mass for an adiabatic system, we reproduce the Boulware-Deser-Cai solution in Guass-Bonnet gravity. Using this gravi-thermodynamics thought, we obtain a NEW class of solution in $F(R)$ gravity in an $n$-dimensional (n$geq$3) spacetime which permits three-type $(n-2)$-dimensional maximally symmetric subspace, as an extension of our recent three-dimensional black hole solution, and four-dimensional Clifton-Barrow solution in $F(R)$ gravity.
Solutions to a scalar-tensor (dilaton) quantum gravity theory, interacting with quantized matter, are described. Dirac quantization is frustrated by quantal anomalies in the constraint algebra. Progress is made only after the Wheeler--DeWitt equation
Previously, the Einstein equation has been described as an equation of state, general relativity as the equilibrium state of gravity, and $f({cal R})$ gravity as a non-equilibrium one. We apply Eckarts first order thermodynamics to the effective diss
We comment on the recently introduced Gauss-Bonnet gravity in four dimensions. We argue that it does not make sense to consider this theory to be defined by a set of $Dto 4$ solutions of the higher-dimensional Gauss-Bonnet gravity. We show that a wel
We extend to the Horndeski realm the irreversible thermodynamics description of gravity previously studied in first generation scalar-tensor theories. We identify a subclass of Horndeski theories as an out-of--equilibrium state, while general relativ
Within the context of scalar-tensor gravity, we explore the generalized second law (GSL) of gravitational thermodynamics. We extend the action of ordinary scalar-tensor gravity theory to the case in which there is a non-minimal coupling between the s