ﻻ يوجد ملخص باللغة العربية
Let the reciprocal Newton constant be an apparently non-dynamical Brans-Dicke scalar field damped oscillating towards its General Relativistic VEV. We show, without introducing additional matter fields or dust, that the corresponding cosmological evolution averagely resembles, in the Jordan frame, the familiar dark radiation -> dark matter -> dark energy domination sequence. The fingerprints of our theory are fine ripples, hopefully testable, in the FRW scale factor; they die away at the General Relativity limit. The possibility that the Brans-Dicke scalar also serves as the inflaton is favorably examined.
We analyze, within the framework of unified brane gravity, the weak-field perturbations caused by the presence of matter on a 3-brane. Although deviating from the Randall-Sundrum approach, the masslessness of the graviton is still preserved. In parti
In this paper, we study damped oscillating form of dark energy for explaining dynamics of universe. First of all, we consider universe is filled with an ideal fluid which has damped oscillating dark energy in terms of this case we calculate several p
It is known than the inclusion of spatial curvature can modify the evolution of matter perturbations and affect the Large Scale Structure (LSS) formation. We quantify the effects of the non-zero space curvature in terms of LSS formation for a cosmolo
A dynamical resolution to the cosmological constant fine-tuning problem has been previously put forward, based on a scalar-tensor gravitational theory possessing de Sitter attractor solutions characterized by a small Hubble expansion rate, irrespecti
We study spherically symmetric solutions with a scalar field in the shift-symmetric subclass of the Horndeski theory. Constructing an effective energy-momentum tensor of the scalar field based on the two-fluid model, we decompose the scalar field int