ﻻ يوجد ملخص باللغة العربية
A dynamical resolution to the cosmological constant fine-tuning problem has been previously put forward, based on a scalar-tensor gravitational theory possessing de Sitter attractor solutions characterized by a small Hubble expansion rate, irrespective of an initially large vacuum energy. We show that a technically natural subregion of the parameter space yields a cosmological evolution through radiation- and matter-dominated eras that is essentially indistinguishable from that predicted by General Relativity. Similarly, the proposed model automatically satisfies the observational constraints on a fifth force mediated by the new scalar degree of freedom.
Self tuning is one of the few methods for dynamically cancelling a large cosmological constant and yet giving an accelerating universe. Its drawback is that it tends to screen all sources of energy density, including matter. We develop a model that t
Theoretically, the running of the cosmological constant in the IR region is not ruled out. On the other hand, from the QFT viewpoint, the energy released due to the variation of the cosmological constant in the late universe cannot go to the matter s
The cosmological constant $Lambda$ is usually interpreted as Dark Energy (DE) or modified gravity (MG). Here we propose instead that $Lambda$ corresponds to a boundary term in the action of classical General Relativity. The action is zero for a perfe
We show that Dark Matter consisting of ultralight bosons in a Bose-Einstein condensate induces, via its quantum potential, a small positive cosmological constant which matches the observed value. This explains its origin and why the densities of Dark Matter and Dark Energy are approximately equal.
Deriving the Einstein field equations (EFE) with matter fluid from the action principle is not straightforward, because mass conservation must be added as an additional constraint to make rest-frame mass density variable in reaction to metric variati