ﻻ يوجد ملخص باللغة العربية
We study spherically symmetric solutions with a scalar field in the shift-symmetric subclass of the Horndeski theory. Constructing an effective energy-momentum tensor of the scalar field based on the two-fluid model, we decompose the scalar field into two components: dark matter and dark energy.We find the dark-matter fluid is pressure-less, and its distribution of energy density obeys the inverse-square law. We show the scalar field dark matter can explain the galaxy rotation curve and discuss the time evolution of the dark matter in the cosmic background.
The original mimetic model was proposed to take the role of dark matter. In this paper we consider possible direct interactions of the mimetic dark matter with other matter in the universe, especially the standard model particles such as baryons and
The cosmological energy density $rho_{_{_Lambda}}$ at the Planck scale $M_{rm pl}$ drives inflation and simultaneously reduces its value to create the pair-energy density $rho_{_{_M}}$ via the continuous pair productions of massive fermions and antif
We consider a model of dark matter fluid based on a sector of Horndeski gravity. The model is very successful, at the background level, in reproducing the evolution of the Universe from early times to today. However, at the perturbative level the mod
We present a detailed analysis of the radio synchrotron emission induced by WIMP dark matter annihilations and decays in extragalactic halos. We compute intensity, angular correlation, and source counts and discuss the impact on the expected signals
It has been shown that the nonthermal spectrum of Hawking radiation will lead to information-carrying correlations between emitted particles in the radiation. The mutual information carried by such correlations can not be locally observed and hence i