ﻻ يوجد ملخص باللغة العربية
In this work we study in detail new kinds of motions of the metric tensor. The work is divided into two main parts. In the first part we study the general existence of Kerr-Schild motions --a recently introduced metric motion. We show that generically, Kerr-Schild motions give rise to finite dimensional Lie algebras and are isometrizable, i.e., they are in a one-to-one correspondence with a subset of isometries of a (usually different) spacetime. This is similar to conformal motions. There are however some exceptions that yield infinite dimensional algebras in any dimension of the manifold. We also show that Kerr-Schild motions may be interpreted as some kind of metric symmetries in the sense of having associated some geometrical invariants. In the second part, we suggest a scheme able to cope with other new candidates of metric motions from a geometrical viewpoint. We solve a set of new candidates which may be interpreted as the seeds of further developments and relate them with known methods of finding new solutions to Einsteins field equations. The results are similar to those of Kerr-Schild motions, yet a richer algebraical structure appears. In conclusion, even though several points still remain open, the wealth of results shows that the proposed concept of generalized metric motions is meaningful and likely to have a spin-off in gravitational physics.We end by listing and analyzing some of those open points.
The present work deals with the search of useful physical applications of some generalized groups of metric transformations. We put forward different proposals and focus our attention on the implementation of one of them. Particularly, the results sh
The Newman-Janis (NJ) method is a prescription to derive the Kerr space-time from the Schwarzschild metric. The BTZ, Kerr and five-dimensional Myers-Perry (MP) black hole solutions have already been generated by differe
Starting from a recently constructed stealth Kerr solution of higher order scalar tensor theory involving scalar hair, we analytically construct disforma
The full metric describing a stationary axisymmetric system of two arbitrary Kerr sources, black holes or hyperextreme objects, located on the symmetry axis and kept apart in equilibrium by a massless strut is presented in a concise explicit form inv
Einsteins theory of General Relativity implies that energy, i.e. matter, curves space-time and thus deforms lightlike geodesics, giving rise to gravitational lensing. This phenomenon is well understood in the case of the Schwarzschild metric, and has