ﻻ يوجد ملخص باللغة العربية
The full metric describing a stationary axisymmetric system of two arbitrary Kerr sources, black holes or hyperextreme objects, located on the symmetry axis and kept apart in equilibrium by a massless strut is presented in a concise explicit form involving five physical parameters. The binary system composed of a Schwarzschild black hole and a Kerr source is a special case not covered by the general formulas, and we elaborate the metric for this physically interesting configuration too.
The present paper aims at elaborating a completely physical representation for the general 4-parameter family of the extended double-Kerr spacetimes describing two spinning sources in gravitational equilibrium. This involved problem is solved in a co
Starting from a recently constructed stealth Kerr solution of higher order scalar tensor theory involving scalar hair, we analytically construct disforma
In this work we study in detail new kinds of motions of the metric tensor. The work is divided into two main parts. In the first part we study the general existence of Kerr-Schild motions --a recently introduced metric motion. We show that genericall
The general analysis of the relations between masses and angular momenta in the configurations composed of two balancing extremal Kerr particles is made on the basis of two exact solutions arising as extreme limits of the well-known double-Kerr space
Einsteins theory of General Relativity implies that energy, i.e. matter, curves space-time and thus deforms lightlike geodesics, giving rise to gravitational lensing. This phenomenon is well understood in the case of the Schwarzschild metric, and has