ﻻ يوجد ملخص باللغة العربية
Einsteins theory of General Relativity implies that energy, i.e. matter, curves space-time and thus deforms lightlike geodesics, giving rise to gravitational lensing. This phenomenon is well understood in the case of the Schwarzschild metric, and has been accurately described in the past; however, lensing in the Kerr space-time has received less attention in the literature despite potential practical observational applications. In particular, lensing in such space is not expressible as the gradient of a scalar potential and as such is a source of curl-like signatures and an asymmetric shear pattern. In this paper, we develop a differentiable lensing map in the Kerr metric, reworking and extending previous approaches. By using standard tools of weak gravitational lensing, we isolate and quantify the distortion that is uniquely induced by the presence of angular momentum in the metric. We apply this framework to the distortion induced by a Kerr-like foreground object on a distribution of background of sources. We verify that the new unique lensing signature is orders of magnitude below current observational bounds for a range of lens configurations.
Starting from a recently constructed stealth Kerr solution of higher order scalar tensor theory involving scalar hair, we analytically construct disforma
Gravitational waves from the distant sources are gravitationally lensed during their propagation through the intervening matter inhomogeneities before arriving at detectors. It has been proposed in the literature that the variance of the lensed wavef
Relativistic contributions to the dynamics of structure formation come in a variety of forms, and can potentially give corrections to the standard picture on typical scales of 100 Mpc. These corrections cannot be obtained by Newtonian numerical simul
The gravitational lensing effects in the weak gravitational field by exotic lenses have been investigated intensively to find nonluminous exotic objects. Gravitational lensing based on 1/r^n fall-off metric, as a one-parameter model that can treat by
The full metric describing a stationary axisymmetric system of two arbitrary Kerr sources, black holes or hyperextreme objects, located on the symmetry axis and kept apart in equilibrium by a massless strut is presented in a concise explicit form inv