ﻻ يوجد ملخص باللغة العربية
We prove that there does not exist a nontrivial quantization of the Poisson algebra of the symplectic manifold S^2 which is irreducible on the subalgebra generated by the components {S_1,S_2,S_3} of the spin vector. We also show that there does not exist such a quantization of the Poisson subalgebra P consisting of polynomials in {S_1,S_2,S_3}. Furthermore, we show that the maximal Poisson subalgebra of P containing {1,S_1,S_2,S_3} that can be so quantized is just that generated by {1,S_1,S_2,S_3}.
An assessment of the magnitude of the rearrangement contribution to the Fermi energy and to the binding energy per particle is carried out in symmetric nuclear matter by extending the G-matrix framework. The restoration of the thermodynamic consisten
We study the Seiberg-Witten invariant $lambda_{rm{SW}} (X)$ of smooth spin $4$-manifolds $X$ with integral homology of $S^1times S^3$ defined by Mrowka, Ruberman, and Saveliev as a signed count of irreducible monopoles amended by an index-theoretic c
Let $Sigma$ be a compact Riemann surface and $h_{d,k}(Sigma)$ denote the space of degree $dgeq 1$ holomorphic maps $Sigmara CP^k$. In theoretical physics this arises as the moduli space of charge $d$ lumps (or instantons) in the $CP^k$ model on $Sigm
We study singularity formation in spherically symmetric solutions of the charge-one and charge-two sector of the (2+1)-dimensional S^2 sigma-model and the (4+1)-dimensional Yang-Mills model, near the adiabatic limit. These equations are non-integrabl
In the context of the relaxation time approximation to Boltzmann transport theory, we examine the behavior of the Hall number, $n_H$, of a metal in the neighborhood of a Lifshitz transition from a closed Fermi surface to open sheets. We find a univer