ﻻ يوجد ملخص باللغة العربية
In the context of the relaxation time approximation to Boltzmann transport theory, we examine the behavior of the Hall number, $n_H$, of a metal in the neighborhood of a Lifshitz transition from a closed Fermi surface to open sheets. We find a universal non-analytic dependence of $n_H$ on the electron density in the high field limit, but a non-singular dependence at low fields. The existence of an assumed nematic transition produces a doping dependent $n_H$ similar to that observed in recent experiments in the high temperature superconductor YBa$_2$Cu$_3$O$_{7-x}$.
Tuning of electronic density-of-states singularities is a common route to unconventional metal physics. Conceptually, van Hove singularities are realized only in clean two-dimensional systems. Little attention has therefore been given to the disorder
A van Hove singularity (VHS) often significantly amplifies the electronic instability of a crystalline solid, including correlation-induced phenomena such as Hunds metallicity. We perform a systematic study on the interplay between Hunds coupling and
The most salient features observed around a metamagnetic transition in Sr3Ru2O7 are well captured in a simple model for spontaneous Fermi surface symmetry breaking under a magnetic field, without invoking a putative quantum critical point. The Fermi
The magnetic excitation spectrum of the quantum magnet YbCl$_3$ is studied with inelastic neutron scattering. The spectrum exhibits an unusually sharp feature within a broad continuum, as well as conventional spin waves. By including both transverse
Time reversal symmetric (TRS) invariant topological insulators (TIs) fullfil a paradigmatic role in the field of topological materials, standing at the origin of its development. Apart from TRS protected strong TIs, it was realized early on that more