ترغب بنشر مسار تعليمي؟ اضغط هنا

Decentralized Failure Diagnosis of Stochastic Discrete Event Systems

341   0   0.0 ( 0 )
 نشر من قبل Daowen Qiu
 تاريخ النشر 2006
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, the diagnosability of {it stochastic discrete event systems} (SDESs) was investigated in the literature, and, the failure diagnosis considered was {it centralized}. In this paper, we propose an approach to {it decentralized} failure diagnosis of SDESs, where the stochastic system uses multiple local diagnosers to detect failures and each local diagnoser possesses its own information. In a way, the centralized failure diagnosis of SDESs can be viewed as a special case of the decentralized failure diagnosis presented in this paper with only one projection. The main contributions are as follows: (1) We formalize the notion of codiagnosability for stochastic automata, which means that a failure can be detected by at least one local stochastic diagnoser within a finite delay. (2) We construct a codiagnoser from a given stochastic automaton with multiple projections, and the codiagnoser associated with the local diagnosers is used to test codiagnosability condition of SDESs. (3) We deal with a number of basic properties of the codiagnoser. In particular, a necessary and sufficient condition for the codiagnosability of SDESs is presented. (4) We give a computing method in detail to check whether codiagnosability is violated. And (5) some examples are described to illustrate the applications of the codiagnosability and its computing method.

قيم البحث

اقرأ أيضاً

176 - Kuize Zhang 2020
The state inference problem and fault diagnosis/prediction problem are fundamental topics in many areas. In this paper, we consider discrete-event systems (DESs) modeled by finite-state automata (FSAs). There exist results for decentraliz
In order to more effectively cope with the real-world problems of vagueness, {it fuzzy discrete event systems} (FDESs) were proposed recently, and the supervisory control theory of FDESs was developed. In view of the importance of failure diagnosis, in this paper, we present an approach of the failure diagnosis in the framework of FDESs. More specifically: (1) We formalize the definition of diagnosability for FDESs, in which the observable set and failure set of events are {it fuzzy}, that is, each event has certain degree to be observable and unobservable, and, also, each event may possess different possibility of failure occurring. (2) Through the construction of observability-based diagnosers of FDESs, we investigate its some basic properties. In particular, we present a necessary and sufficient condition for diagnosability of FDESs. (3) Some examples serving to illuminate the applications of the diagnosability of FDESs are described. To conclude, some related issues are raised for further consideration.
We study the new concept of relative coobservability in decentralized supervisory control of discrete-event systems under partial observation. This extends our previous work on relative observability from a centralized setup to a decentralized one. A fundamental concept in decentralized supervisory control is coobservability (and its several variations); this property is not, however, closed under set union, and hence there generally does not exist the supremal element. Our proposed relative coobservability, although stronger than coobservability, is algebraically well-behaved, and the supremal relatively coobservable sublanguage of a given language exists. We present an algorithm to compute this supremal sublanguage. Moreover, relative coobservability is weaker than conormality, which is also closed under set union; unlike conormality, relative coobservability imposes no constraint on disabling unobservable controllable events.
An epistemic model for decentralized discrete-event systems with non-binary control is presented. This framework combines existing work on conditional control decisions with existing work on formal reasoning about knowledge in discrete-event systems. The novelty in the model presented is that the necessary and sufficient conditions for problem solvability encapsulate the actions that supervisors must take. This direct coupling between knowledge and action -- in a formalism that mimics natural language -- makes it easier, when the problem conditions fail, to determine how the problem requirements should be revised.
We study supervisor localization for real-time discrete-event systems (DES) in the Brandin-Wonham framework of timed supervisory control. We view a real-time DES as comprised of asynchronous agents which are coupled through imposed logical and tempor al specifications; the essence of supervisor localization is the decomposition of monolithic (global) control action into local control strategies for these individual agents. This study extends our previous work on supervisor localization for untimed DES, in that monolithic timed control action typically includes not only disabling action as in the untimed case, but also ``clock preempting action which enforces prescribed temporal behavior. The latter action is executed by a class of special events, called ``forcible events; accordingly, we localize monolithic preemptive action with respect to these events. We demonstrate the new features of timed supervisor localization with a manufacturing cell case study, and discuss a distributed control implementation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا